Home
Class 12
MATHS
If 5(tan^2x - cos^2x)=2cos 2x + 9, then ...

If `5(tan^2x - cos^2x)=2cos 2x + 9`, then the value of cos4x is

A

`- (7)/(9)`

B

`- (3)/(5)`

C

`(1)/(3)`

D

`(2)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5(\tan^2 x - \cos^2 x) = 2\cos 2x + 9 \) and find the value of \( \cos 4x \), we can follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that \( \tan^2 x = \sec^2 x - 1 \). Therefore, we can rewrite \( \tan^2 x \) in terms of \( \cos^2 x \): \[ \tan^2 x = \sec^2 x - 1 = \frac{1}{\cos^2 x} - 1 \] Substituting this into the equation gives: \[ 5\left(\frac{1}{\cos^2 x} - 1 - \cos^2 x\right) = 2\cos 2x + 9 \] ### Step 2: Simplify the left side The left side simplifies to: \[ 5\left(\frac{1 - \cos^2 x - \cos^4 x}{\cos^2 x}\right) = 5\left(\frac{1 - \cos^2 x - \cos^4 x}{\cos^2 x}\right) \] This can be rewritten as: \[ \frac{5(1 - \cos^2 x - \cos^4 x)}{\cos^2 x} \] ### Step 3: Rewrite \( \cos 2x \) Using the identity \( \cos 2x = 2\cos^2 x - 1 \), we can substitute into the equation: \[ 5\left(\frac{1 - \cos^2 x - \cos^4 x}{\cos^2 x}\right) = 2(2\cos^2 x - 1) + 9 \] This simplifies to: \[ 5\left(\frac{1 - \cos^2 x - \cos^4 x}{\cos^2 x}\right) = 4\cos^2 x - 2 + 9 \] \[ 5\left(\frac{1 - \cos^2 x - \cos^4 x}{\cos^2 x}\right) = 4\cos^2 x + 7 \] ### Step 4: Substitute \( t = \cos^2 x \) Let \( t = \cos^2 x \). The equation becomes: \[ 5\left(\frac{1 - t - t^2}{t}\right) = 4t + 7 \] Cross-multiplying gives: \[ 5(1 - t - t^2) = (4t + 7)t \] Expanding both sides results in: \[ 5 - 5t - 5t^2 = 4t^2 + 7t \] ### Step 5: Rearranging the equation Rearranging gives us: \[ 5 - 5t - 5t^2 - 4t^2 - 7t = 0 \] This simplifies to: \[ -9t^2 - 12t + 5 = 0 \] Multiplying through by -1: \[ 9t^2 + 12t - 5 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 9 \cdot (-5)}}{2 \cdot 9} \] Calculating the discriminant: \[ t = \frac{-12 \pm \sqrt{144 + 180}}{18} = \frac{-12 \pm \sqrt{324}}{18} = \frac{-12 \pm 18}{18} \] This gives us two solutions: \[ t = \frac{6}{18} = \frac{1}{3} \quad \text{and} \quad t = \frac{-30}{18} \quad \text{(invalid since } t = \cos^2 x \text{ must be non-negative)} \] ### Step 7: Find \( \cos 2x \) and \( \cos 4x \) Since \( t = \cos^2 x = \frac{1}{3} \): \[ \cos 2x = 2\cos^2 x - 1 = 2 \cdot \frac{1}{3} - 1 = \frac{2}{3} - 1 = -\frac{1}{3} \] Now, using \( \cos 4x = 2\cos^2 2x - 1 \): \[ \cos 4x = 2\left(-\frac{1}{3}\right)^2 - 1 = 2 \cdot \frac{1}{9} - 1 = \frac{2}{9} - 1 = \frac{2}{9} - \frac{9}{9} = -\frac{7}{9} \] ### Final Answer Thus, the value of \( \cos 4x \) is: \[ \boxed{-\frac{7}{9}} \]

To solve the equation \( 5(\tan^2 x - \cos^2 x) = 2\cos 2x + 9 \) and find the value of \( \cos 4x \), we can follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that \( \tan^2 x = \sec^2 x - 1 \). Therefore, we can rewrite \( \tan^2 x \) in terms of \( \cos^2 x \): \[ \tan^2 x = \sec^2 x - 1 = \frac{1}{\cos^2 x} - 1 \] Substituting this into the equation gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

Find the value of ∫2x cos (x2 – 5).

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If cos4x=1+ksin^2x cos^2x , then write the value of kdot

If cos(pi/4-x)cos2x+sinxsin2xsecx=cos x sin 2x sec x+cos(pi/4+x)cos 2x then possible value of sec x is

If sin x=cos^2x ,\ then write the value of cos^2x\ (1+cos^2x)dot

Solve: cos4x=cos2x

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) = lambdacosx , then the value of lambda is ___________.