Home
Class 12
MATHS
Solve sin x("cos"x/4-2 sin x)+(1+"sin"x/...

Solve `sin x("cos"x/4-2 sin x)+(1+"sin"x/4-2 cos x)cos x =0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x \left( \cos \frac{x}{4} - 2 \sin x \right) + \left( 1 + \sin \frac{x}{4} - 2 \cos x \right) \cos x = 0 \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \sin x \left( \cos \frac{x}{4} - 2 \sin x \right) + \left( 1 + \sin \frac{x}{4} - 2 \cos x \right) \cos x = 0 \] ### Step 2: Expand the Terms Distributing the terms: \[ \sin x \cos \frac{x}{4} - 2 \sin^2 x + \cos x + \sin \frac{x}{4} \cos x - 2 \cos^2 x = 0 \] ### Step 3: Group Similar Terms Rearranging the equation: \[ \sin x \cos \frac{x}{4} + \sin \frac{x}{4} \cos x - 2 \sin^2 x - 2 \cos^2 x + \cos x = 0 \] ### Step 4: Factor Out Common Terms Notice that \( -2 \sin^2 x - 2 \cos^2 x \) can be factored: \[ \sin x \cos \frac{x}{4} + \sin \frac{x}{4} \cos x - 2(\sin^2 x + \cos^2 x) + \cos x = 0 \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \sin x \cos \frac{x}{4} + \sin \frac{x}{4} \cos x - 2 + \cos x = 0 \] ### Step 5: Simplify Further Rearranging gives: \[ \sin x \cos \frac{x}{4} + \sin \frac{x}{4} \cos x + \cos x - 2 = 0 \] ### Step 6: Use Trigonometric Identities Using the identity for \( \sin(a + b) \): \[ \sin x \cos \frac{x}{4} + \sin \frac{x}{4} \cos x = \sin \left( x + \frac{x}{4} \right) = \sin \left( \frac{5x}{4} \right) \] Thus, we can rewrite the equation as: \[ \sin \left( \frac{5x}{4} \right) + \cos x - 2 = 0 \] ### Step 7: Isolate the Sine Function Rearranging gives: \[ \sin \left( \frac{5x}{4} \right) + \cos x = 2 \] Since the maximum value of \( \sin \) and \( \cos \) is 1, this equation has no solutions because \( \sin \left( \frac{5x}{4} \right) + \cos x \) cannot equal 2. ### Conclusion The given equation has no solutions.

To solve the equation \( \sin x \left( \cos \frac{x}{4} - 2 \sin x \right) + \left( 1 + \sin \frac{x}{4} - 2 \cos x \right) \cos x = 0 \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \sin x \left( \cos \frac{x}{4} - 2 \sin x \right) + \left( 1 + \sin \frac{x}{4} - 2 \cos x \right) \cos x = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.6|4 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve sin 2x+cos 4x=2 .

Solve sin 2x+cos 4x=2 .

Solve sin 2x=4 cos x .

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

Solve 2 sin^(3) x=cos x .

Solve sin 5 x = cos 2 x .

Prove that: (sin 3 x +sin x) sin x + (cos 3x - cos x) cos x = 0

Solve |cos x - 2 sin 2x - cos 3 x|=1-2 sin x - cos 2x .

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Solve the equation 4 sin x cos x + 2 sin x + 2 cos x + 1 = 0