Home
Class 12
MATHS
If tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=...

If `tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=1+sqrt((2x)/(1+x^(2)))` where `x, y in R`, then find the least possible value of y.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) = 1 + \sqrt{\frac{2x}{1+x^2}} \) where \( x, y \in \mathbb{R} \), we will follow these steps: ### Step 1: Analyze the left-hand side (LHS) Using the identity \( \tan^2 a + \cot^2 a \geq 2 \) (with equality when \( a = \frac{\pi}{4} \)), we can say: \[ \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) \geq 2 \] This gives us our first inequality: \[ \text{LHS} \geq 2 \] ### Step 2: Analyze the right-hand side (RHS) Next, we need to analyze the right-hand side: \[ 1 + \sqrt{\frac{2x}{1+x^2}} \] To find the maximum value of \( \sqrt{\frac{2x}{1+x^2}} \), we can set \( f(x) = \frac{2x}{1+x^2} \) and find its maximum. ### Step 3: Find the maximum of \( \sqrt{\frac{2x}{1+x^2}} \) To maximize \( f(x) = \frac{2x}{1+x^2} \), we can take its derivative and set it to zero: \[ f'(x) = \frac{(1+x^2)(2) - 2x(2x)}{(1+x^2)^2} = \frac{2(1+x^2 - 2x^2)}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} \] Setting \( f'(x) = 0 \) gives: \[ 1 - x^2 = 0 \implies x = 1 \quad \text{(since } x \geq 0 \text{)} \] Now, substituting \( x = 1 \) into \( f(x) \): \[ f(1) = \frac{2(1)}{1+1^2} = \frac{2}{2} = 1 \] Thus, the maximum value of \( \sqrt{\frac{2x}{1+x^2}} \) is \( 1 \). ### Step 4: Substitute back into the RHS Now substituting back, we find: \[ 1 + \sqrt{\frac{2x}{1+x^2}} \leq 1 + 1 = 2 \] This gives us our second inequality: \[ \text{RHS} \leq 2 \] ### Step 5: Equate LHS and RHS From the results of Step 1 and Step 4, we have: \[ \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) = 2 \] This means: \[ \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) = 2 \quad \text{when } \tan(\pi(x+y)) = 1 \] This occurs when: \[ \pi(x+y) = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] Thus: \[ x+y = \frac{1}{4} + n \] ### Step 6: Solve for \( y \) Rearranging gives: \[ y = \frac{1}{4} + n - x \] To find the least possible value of \( y \), we need to minimize \( y \). The minimum occurs when \( n \) is minimized (let \( n = -1 \)): \[ y = \frac{1}{4} - 1 - x = -\frac{3}{4} - x \] Since \( x \) can take any real value, to minimize \( y \), we can let \( x \) approach \( -\infty \). However, we need to find the least value of \( y \) when \( x = 1 \) (as derived earlier): \[ y = \frac{1}{4} - 1 = -\frac{3}{4} \] ### Conclusion Thus, the least possible value of \( y \) is: \[ \boxed{-\frac{3}{4}} \]

To solve the equation \( \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) = 1 + \sqrt{\frac{2x}{1+x^2}} \) where \( x, y \in \mathbb{R} \), we will follow these steps: ### Step 1: Analyze the left-hand side (LHS) Using the identity \( \tan^2 a + \cot^2 a \geq 2 \) (with equality when \( a = \frac{\pi}{4} \)), we can say: \[ \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) \geq 2 \] This gives us our first inequality: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.6|4 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

. If tan^2 pi(x+y)+cot^2pi (x+y)=1+sqrt(2x)/(1+x^2) where x,y in RR then the least positive value of y is

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If tan^-1(1/y)=-pi+cot^-1 y, where y=x^2-3x+2, then find the value of x

If x,y in R and satisfy the equation xy(x^(2)-y^(2))=x^(2)+y^(2) where xne0 then the minimum possible value of x^(2)+y^(2) is

If sinx+cosx=sqrt(y+1/y), y gt 0, x in[0,pi] , then find the least value of x satisfying the given conditions.

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x