Home
Class 12
MATHS
Number of roots of cos^2x+(sqrt(3)+1)/2s...

Number of roots of `cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0` which lie in the interval `[-pi,pi]` is 2 (b) 4 (c) 6 (d) 8

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of roots of the equation \[ \cos^2 x + \frac{\sqrt{3} + 1}{2} \sin x - \frac{\sqrt{3}}{4} - 1 = 0 \] that lie in the interval \([-π, π]\), we will follow these steps: ### Step 1: Rewrite the equation Start by rewriting \(\cos^2 x\) in terms of \(\sin x\): \[ \cos^2 x = 1 - \sin^2 x \] Substituting this into the equation gives: \[ 1 - \sin^2 x + \frac{\sqrt{3} + 1}{2} \sin x - \frac{\sqrt{3}}{4} - 1 = 0 \] ### Step 2: Simplify the equation The \(1\) and \(-1\) cancel out: \[ -\sin^2 x + \frac{\sqrt{3} + 1}{2} \sin x - \frac{\sqrt{3}}{4} = 0 \] Multiplying through by \(-1\) to make the leading coefficient positive: \[ \sin^2 x - \frac{\sqrt{3} + 1}{2} \sin x + \frac{\sqrt{3}}{4} = 0 \] ### Step 3: Use the quadratic formula This is a quadratic equation in \(\sin x\). We can use the quadratic formula: \[ \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = -\frac{\sqrt{3} + 1}{2}\), and \(c = \frac{\sqrt{3}}{4}\). Calculating the discriminant: \[ b^2 - 4ac = \left(-\frac{\sqrt{3} + 1}{2}\right)^2 - 4 \cdot 1 \cdot \frac{\sqrt{3}}{4} \] \[ = \frac{(\sqrt{3} + 1)^2}{4} - \sqrt{3} \] \[ = \frac{3 + 2\sqrt{3} + 1}{4} - \sqrt{3} \] \[ = \frac{4 + 2\sqrt{3}}{4} - \frac{4\sqrt{3}}{4} \] \[ = \frac{4 - 2\sqrt{3}}{4} \] ### Step 4: Solve for \(\sin x\) Now substituting back into the quadratic formula: \[ \sin x = \frac{\frac{\sqrt{3} + 1}{2} \pm \sqrt{\frac{4 - 2\sqrt{3}}{4}}}{2} \] \[ = \frac{\sqrt{3} + 1 \pm \sqrt{4 - 2\sqrt{3}}}{4} \] ### Step 5: Find the angles We need to find the angles \(x\) corresponding to the values of \(\sin x\) found in the previous step. The sine function is periodic and has specific values in the intervals: - For \(\sin x = \frac{1}{2}\), the angles are \(x = \frac{\pi}{6}\) and \(x = \frac{5\pi}{6}\). - For \(\sin x = \frac{\sqrt{3}}{2}\), the angles are \(x = \frac{\pi}{3}\) and \(x = \frac{2\pi}{3}\). ### Step 6: Count the roots In the interval \([-π, π]\), we also consider negative angles: - For \(\sin x = \frac{1}{2}\): \(x = -\frac{5\pi}{6}\) and \(x = -\frac{\pi}{6}\). - For \(\sin x = \frac{\sqrt{3}}{2}\): \(x = -\frac{2\pi}{3}\) and \(x = -\frac{\pi}{3}\). Thus, we have a total of 4 roots: 1. \(\frac{\pi}{6}\) 2. \(\frac{5\pi}{6}\) 3. \(-\frac{\pi}{6}\) 4. \(-\frac{5\pi}{6}\) ### Conclusion The total number of roots of the equation in the interval \([-π, π]\) is **4**.

To find the number of roots of the equation \[ \cos^2 x + \frac{\sqrt{3} + 1}{2} \sin x - \frac{\sqrt{3}}{4} - 1 = 0 \] that lie in the interval \([-π, π]\), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos6x+tan^2x+cos(6x)tan^2x=1 in the interval [0,2pi] is (a) 4 (b) 5 (c) 6 (d) 7

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of solutions of the equation cos6x+tan^2x+cos6xtan^2x=1 in the interval [0,2pi] is 4 (b) 5 (c) 6 (d) 7

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

The arithmetic mean of the roots of the equation 4cos^3x-4cos^2x-cos(315pi+x)=1 in the interval (0,315pi) is equal to (A) 50pi (B) 51pi (C) 100pi (D) 315pi

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)=sqrt(3) belongs to the interval [0,pi/3] (b) (pi/3,pi/3) (c) [(3pi)/4,pi] (d) none-existent

The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)=sqrt(3) belongs to the interval [0,pi/3] (b) (pi/3,pi/3) (c) [(3pi)/4,pi] (d) none-existent

Number of roots of the equation sinx+cosx=x^2-2x+sqrt(6) is (A) 0 (B) 2 (C) 4 (D) an odd number

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Single Correct Answer Type)
  1. Assume that theta is a rational multiple of pi such that cos theta is ...

    Text Solution

    |

  2. If x, y in [0, 2pi] and sin x + sin y=2, then the value of x+y is

    Text Solution

    |

  3. Number of roots of cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0 which lie ...

    Text Solution

    |

  4. The sum of all the solutions of cottheta=sin2theta(theta!=npi, n in t ...

    Text Solution

    |

  5. The number of solutions of 12 cos^(3) x-7 cos^(2) x+4 cos x=9 is

    Text Solution

    |

  6. Number of solutions of the equation sin x + cos x-2sqrt(2) sin x cos x...

    Text Solution

    |

  7. The general solution of (tan 5x-tan 4x)/(1+ tan 5 x tan 4x)=1 is

    Text Solution

    |

  8. If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b, xsinc+ysin2c...

    Text Solution

    |

  9. The number of solutions of the equation sin 2 theta-2 cos theta +4 sin...

    Text Solution

    |

  10. The number of distinct real roots of the equation tan(2pix)/(x^2+x+1)=...

    Text Solution

    |

  11. The smallest positive value of x (in radians) satisfying the equation ...

    Text Solution

    |

  12. The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 ...

    Text Solution

    |

  13. The range of 'y, such that the equation in x, y + cos x = sin x has a ...

    Text Solution

    |

  14. Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos th...

    Text Solution

    |

  15. One of the general solutions of sqrt(3) cos theta -3 sin theta =4 sin ...

    Text Solution

    |

  16. The general solution of the equation 8 cos x cos 2x cos 4x = sin 6x//s...

    Text Solution

    |

  17. (sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqr...

    Text Solution

    |

  18. For 0<x , y<pi, the number of ordered pairs (x , y) satisfying the sys...

    Text Solution

    |

  19. The least positive solution of cot (pi/(3 sqrt(3)) sin 2x)=sqrt(3) lie...

    Text Solution

    |

  20. The number of real roots of the equation cosec theta + sec theta-sqrt(...

    Text Solution

    |