Home
Class 12
MATHS
The number of solution of sec^(2) theta ...

The number of solution of `sec^(2) theta + cosec^(2) theta+2 cosec^(2) theta=8, 0 le theta le pi//2` is

A

4

B

3

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^2 \theta + \csc^2 \theta + 2 \csc^2 \theta = 8 \) for \( 0 \leq \theta \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation The given equation can be simplified as follows: \[ \sec^2 \theta + 3 \csc^2 \theta = 8 \] ### Step 2: Substitute trigonometric identities We know that: \[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \quad \text{and} \quad \csc^2 \theta = \frac{1}{\sin^2 \theta} \] Substituting these into the equation gives: \[ \frac{1}{\cos^2 \theta} + 3 \cdot \frac{1}{\sin^2 \theta} = 8 \] ### Step 3: Find a common denominator The common denominator for the left-hand side is \( \cos^2 \theta \sin^2 \theta \): \[ \frac{\sin^2 \theta + 3 \cos^2 \theta}{\cos^2 \theta \sin^2 \theta} = 8 \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ \sin^2 \theta + 3 \cos^2 \theta = 8 \cos^2 \theta \sin^2 \theta \] ### Step 5: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ (1 - \cos^2 \theta) + 3 \cos^2 \theta = 8 \cos^2 \theta (1 - \cos^2 \theta) \] This simplifies to: \[ 1 + 2 \cos^2 \theta = 8 \cos^2 \theta - 8 \cos^4 \theta \] ### Step 6: Rearranging the equation Rearranging gives: \[ 8 \cos^4 \theta - 6 \cos^2 \theta + 1 = 0 \] ### Step 7: Let \( x = \cos^2 \theta \) Let \( x = \cos^2 \theta \). The equation becomes: \[ 8x^2 - 6x + 1 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 8 \cdot 1}}{2 \cdot 8} \] \[ x = \frac{6 \pm \sqrt{36 - 32}}{16} \] \[ x = \frac{6 \pm 2}{16} \] This gives two solutions: 1. \( x = \frac{8}{16} = \frac{1}{2} \) 2. \( x = \frac{4}{16} = \frac{1}{4} \) ### Step 9: Find \( \theta \) Now substituting back for \( \cos^2 \theta \): 1. \( \cos^2 \theta = \frac{1}{2} \) gives \( \theta = \frac{\pi}{4} \) 2. \( \cos^2 \theta = \frac{1}{4} \) gives \( \theta = \frac{\pi}{3} \) ### Step 10: Count the solutions Both solutions \( \theta = \frac{\pi}{4} \) and \( \theta = \frac{\pi}{3} \) lie within the interval \( [0, \frac{\pi}{2}] \). ### Final Answer Thus, the number of solutions is **2**. ---

To solve the equation \( \sec^2 \theta + \csc^2 \theta + 2 \csc^2 \theta = 8 \) for \( 0 \leq \theta \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation The given equation can be simplified as follows: \[ \sec^2 \theta + 3 \csc^2 \theta = 8 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+cot^(2) theta = cosec^(2) theta

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Solve cosec^(2)theta-cot^(2) theta=cos theta .

1/sec2(theta) + 1/cosec2(theta) =

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Prove that, sin^2 theta+ cosec^2 theta>=2

Find the minimum value of sec^2 theta + cosec^2 theta - 4.

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Find the general value of theta 2 cot ^(2) theta = cosec ^(2) theta

"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1 , If theta belongs to

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Single Correct Answer Type)
  1. General solution of tan theta+tan 4 theta+tan 7 theta=tan theta tan 4 ...

    Text Solution

    |

  2. The general solution of tan theta+tan 2 theta+tan 3 theta=0 is

    Text Solution

    |

  3. The number of solution of sec^(2) theta + cosec^(2) theta+2 cosec^(2) ...

    Text Solution

    |

  4. Which of the following is true for z=(3+2isintheta)(1-2sintheta)w h e ...

    Text Solution

    |

  5. The number of solution of sin x+sin 2x+sin 3x =cos x +cos 2x+cos 3x,...

    Text Solution

    |

  6. Number of solutions of the equation cos^(4) 2x + 2 sin^(2) 2x=17( cos...

    Text Solution

    |

  7. The number of values of theta in the interval (-pi/2,pi/2) satisfying ...

    Text Solution

    |

  8. The value of k if the equation 2cosx+cos2k x=3 has only one solution i...

    Text Solution

    |

  9. Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(si...

    Text Solution

    |

  10. The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for t...

    Text Solution

    |

  11. If tan(A-B)=1a n dsec(A+B)=2/(sqrt(3)) , then the smallest positive va...

    Text Solution

    |

  12. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  13. If tan 3 theta + tan theta =2 tan 2 theta, then theta is equal to (n i...

    Text Solution

    |

  14. The solution of 4sin^2x+tan^2x+cos e c^2x+cot^2x-6=0i s(n in Z) (a) ...

    Text Solution

    |

  15. If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

    Text Solution

    |

  16. The general solution of 4 sin^4 x + cos^4x= 1 is

    Text Solution

    |

  17. For n in Z , the general solution of (sqrt(3)-1)sintheta+(sqrt(3)+1)c...

    Text Solution

    |

  18. The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(p...

    Text Solution

    |

  19. One of the general solutions of 4 sin theta sin 2 theta sin 4 theta=si...

    Text Solution

    |

  20. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |