Home
Class 12
MATHS
The number of solution of sin x+sin 2x+s...

The number of solution of `sin x+sin 2x+sin 3x`
`=cos x +cos 2x+cos 3x, 0 le x le 2pi`, is

A

7

B

5

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of solutions for the equation \( \sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x \) in the interval \( 0 \leq x \leq 2\pi \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ \sin x + \sin 2x + \sin 3x - \cos x - \cos 2x - \cos 3x = 0 \] ### Step 2: Grouping Sine and Cosine Terms We can rewrite the equation as: \[ \sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x \] This can be rearranged to: \[ \sin x + \sin 2x + \sin 3x - \cos x - \cos 2x - \cos 3x = 0 \] ### Step 3: Using Trigonometric Identities Using the identity \( \sin A + \sin B = 2 \sin \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \) and similar for cosine, we can simplify the terms. However, for this problem, we will directly analyze the equation. ### Step 4: Setting Up for Solutions We can express the equation in terms of tangent: \[ \tan 2x = 1 \] This implies: \[ 2x = n\pi + \frac{\pi}{4} \quad \text{for } n \in \mathbb{Z} \] Thus: \[ x = \frac{n\pi}{2} + \frac{\pi}{8} \] ### Step 5: Finding Solutions in the Interval Now, we need to find the values of \( n \) such that \( 0 \leq x \leq 2\pi \): 1. For \( n = 0 \): \[ x = \frac{\pi}{8} \] 2. For \( n = 1 \): \[ x = \frac{3\pi}{8} \] 3. For \( n = 2 \): \[ x = \frac{5\pi}{8} \] 4. For \( n = 3 \): \[ x = \frac{7\pi}{8} \] 5. For \( n = 4 \): \[ x = \frac{9\pi}{8} \] 6. For \( n = 5 \): \[ x = \frac{11\pi}{8} \] 7. For \( n = 6 \): \[ x = \frac{13\pi}{8} \] 8. For \( n = 7 \): \[ x = \frac{15\pi}{8} \] 9. For \( n = 8 \): \[ x = \frac{17\pi}{8} \] 10. For \( n = 9 \): \[ x = \frac{19\pi}{8} \] ### Step 6: Counting Valid Solutions Now we check which of these values fall within the interval \( [0, 2\pi] \): - Valid solutions are \( \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8} \). ### Conclusion Thus, the total number of solutions in the interval \( [0, 2\pi] \) is **8**.

To find the number of solutions for the equation \( \sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x \) in the interval \( 0 \leq x \leq 2\pi \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ \sin x + \sin 2x + \sin 3x - \cos x - \cos 2x - \cos 3x = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 in 0 le x le 3 pi is

The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 in 0 le x le 3 pi is

Prove that: (sin 3 x +sin x) sin x + (cos 3x - cos x) cos x = 0

Find the number of solutions of |cos x|=sin x , 0 le x le 4 pi

Find the number of solutions for the equation sin 5x+sin 3x+sin x=0 for 0 le x le pi .

Find the number of solutions of cos x =|1+ sin x |, 0 le x le 3 pi

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

The number of solutions of the equation "sin" x = "cos" 3x " in " [0, pi] is

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Single Correct Answer Type)
  1. The number of solution of sec^(2) theta + cosec^(2) theta+2 cosec^(2) ...

    Text Solution

    |

  2. Which of the following is true for z=(3+2isintheta)(1-2sintheta)w h e ...

    Text Solution

    |

  3. The number of solution of sin x+sin 2x+sin 3x =cos x +cos 2x+cos 3x,...

    Text Solution

    |

  4. Number of solutions of the equation cos^(4) 2x + 2 sin^(2) 2x=17( cos...

    Text Solution

    |

  5. The number of values of theta in the interval (-pi/2,pi/2) satisfying ...

    Text Solution

    |

  6. The value of k if the equation 2cosx+cos2k x=3 has only one solution i...

    Text Solution

    |

  7. Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(si...

    Text Solution

    |

  8. The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for t...

    Text Solution

    |

  9. If tan(A-B)=1a n dsec(A+B)=2/(sqrt(3)) , then the smallest positive va...

    Text Solution

    |

  10. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  11. If tan 3 theta + tan theta =2 tan 2 theta, then theta is equal to (n i...

    Text Solution

    |

  12. The solution of 4sin^2x+tan^2x+cos e c^2x+cot^2x-6=0i s(n in Z) (a) ...

    Text Solution

    |

  13. If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

    Text Solution

    |

  14. The general solution of 4 sin^4 x + cos^4x= 1 is

    Text Solution

    |

  15. For n in Z , the general solution of (sqrt(3)-1)sintheta+(sqrt(3)+1)c...

    Text Solution

    |

  16. The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(p...

    Text Solution

    |

  17. One of the general solutions of 4 sin theta sin 2 theta sin 4 theta=si...

    Text Solution

    |

  18. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |

  19. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  20. The total number of solution of |cotx|=cotx+1/(sinx),x in [0,3pi] , is...

    Text Solution

    |