Home
Class 12
MATHS
Number of solution(s) satisfying the equ...

Number of solution(s) satisfying the equation `1/(sinx)-1/(sin2x)=2/(sin4x)` in `[0,4pi]` equals 0 (b) 2 (c) 4 (d) 6

A

0

B

2

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{\sin x} - \frac{1}{\sin 2x} = \frac{2}{\sin 4x} \) in the interval \([0, 4\pi]\), we will follow these steps: ### Step 1: Rewrite the equation Start by rewriting the equation: \[ \frac{1}{\sin x} - \frac{1}{\sin 2x} = \frac{2}{\sin 4x} \] ### Step 2: Find a common denominator To combine the left-hand side, we need a common denominator: \[ \frac{\sin 2x - \sin x}{\sin x \sin 2x} = \frac{2}{\sin 4x} \] ### Step 3: Use the identity for \(\sin 4x\) Recall the double angle identity: \[ \sin 4x = 2 \sin 2x \cos 2x \] Substituting this into the equation gives: \[ \frac{\sin 2x - \sin x}{\sin x \sin 2x} = \frac{2}{2 \sin 2x \cos 2x} \] This simplifies to: \[ \frac{\sin 2x - \sin x}{\sin x \sin 2x} = \frac{1}{\sin 2x \cos 2x} \] ### Step 4: Cross-multiply Cross-multiplying yields: \[ (\sin 2x - \sin x) \cos 2x = \sin x \] ### Step 5: Rearranging the equation Rearranging gives: \[ \sin 2x \cos 2x - \sin x \cos 2x - \sin x = 0 \] This can be factored: \[ \sin 2x \cos 2x - \sin x (\cos 2x + 1) = 0 \] ### Step 6: Solve the factors This gives us two cases to solve: 1. \( \sin 2x \cos 2x = 0 \) 2. \( \sin x (\cos 2x + 1) = 0 \) ### Step 7: Solve \( \sin 2x \cos 2x = 0 \) This implies: \[ \sin 2x = 0 \quad \text{or} \quad \cos 2x = 0 \] - For \( \sin 2x = 0 \): \[ 2x = n\pi \implies x = \frac{n\pi}{2} \] In the interval \([0, 4\pi]\), \( n = 0, 1, 2, 3, 4, 5, 6, 7, 8\) gives solutions: \(0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \frac{5\pi}{2}, 3\pi, \frac{7\pi}{2}, 4\pi\). - For \( \cos 2x = 0 \): \[ 2x = \frac{\pi}{2} + n\pi \implies x = \frac{\pi}{4} + \frac{n\pi}{2} \] In the interval \([0, 4\pi]\), \( n = 0, 1, 2, 3, 4, 5, 6, 7\) gives solutions: \(\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}, \frac{11\pi}{4}, \frac{13\pi}{4}, \frac{15\pi}{4}\). ### Step 8: Solve \( \sin x (\cos 2x + 1) = 0 \) This implies: 1. \( \sin x = 0 \) gives \( x = n\pi \) for \( n = 0, 1, 2, 3, 4 \) which gives \( 0, \pi, 2\pi, 3\pi, 4\pi \). 2. \( \cos 2x + 1 = 0 \) gives no additional solutions since \( \cos 2x = -1 \) leads to \( 2x = (2n+1)\pi \) which does not yield new solutions in the given interval. ### Step 9: Count unique solutions Now we count the unique solutions from all cases: - From \( \sin 2x = 0 \): \( 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \frac{5\pi}{2}, 3\pi, \frac{7\pi}{2}, 4\pi \) (9 solutions). - From \( \cos 2x = 0 \): \( \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}, \frac{11\pi}{4}, \frac{13\pi}{4}, \frac{15\pi}{4} \) (8 solutions). - From \( \sin x = 0 \): \( 0, \pi, 2\pi, 3\pi, 4\pi \) (5 solutions). ### Final Count Upon combining and eliminating duplicates, we find that there are a total of **4 unique solutions** in the interval \([0, 4\pi]\). ### Conclusion Thus, the number of solutions satisfying the equation is \( \boxed{4} \).

To solve the equation \( \frac{1}{\sin x} - \frac{1}{\sin 2x} = \frac{2}{\sin 4x} \) in the interval \([0, 4\pi]\), we will follow these steps: ### Step 1: Rewrite the equation Start by rewriting the equation: \[ \frac{1}{\sin x} - \frac{1}{\sin 2x} = \frac{2}{\sin 4x} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Number of solution of the equation sin^(2)x+(sin^(2)3x)/4=sinx sin 3x , in x epsilon(0,3pi) equals

The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in "[0, 9pi) is equal to

Number of solutions of the equation 2 sin^3x + 6 sin^2x -sin x-3=0 in (0, 2pi), are

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in [0, 2pi] is euqal to

The number of solutions of the equation sinx. Sin2x. Sin3x = 1 in [0, 2pi]

Number of solutions of the equation sin^4x-cos^2xsinx+2sin^2x+sinx=0in0lt=xlt=3pi is_____

The number of solutions of the equation sin^3xcosx+sin^2xcos^2x+sinxcos^3x=1 in the interval [0,2pi] is/are 0 (b) 2 (c) 3 (d) infinite

The number of solutions of the equation sin^3xcosx+sin^2xcos^2x+sinxcos^3x=1 in the interval [0,2pi] is/are 0 (b) 2 (c) 3 (d) infinite

Number of solution of equation 2sinx/2cos^2x-2sinx/2sin^2x=cos^2x-sin^2xforx in [0,4pi] is (a) 6 (b) 10 (c) 2 (d) 3

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Single Correct Answer Type)
  1. The number of values of theta in the interval (-pi/2,pi/2) satisfying ...

    Text Solution

    |

  2. The value of k if the equation 2cosx+cos2k x=3 has only one solution i...

    Text Solution

    |

  3. Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(si...

    Text Solution

    |

  4. The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for t...

    Text Solution

    |

  5. If tan(A-B)=1a n dsec(A+B)=2/(sqrt(3)) , then the smallest positive va...

    Text Solution

    |

  6. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  7. If tan 3 theta + tan theta =2 tan 2 theta, then theta is equal to (n i...

    Text Solution

    |

  8. The solution of 4sin^2x+tan^2x+cos e c^2x+cot^2x-6=0i s(n in Z) (a) ...

    Text Solution

    |

  9. If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

    Text Solution

    |

  10. The general solution of 4 sin^4 x + cos^4x= 1 is

    Text Solution

    |

  11. For n in Z , the general solution of (sqrt(3)-1)sintheta+(sqrt(3)+1)c...

    Text Solution

    |

  12. The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(p...

    Text Solution

    |

  13. One of the general solutions of 4 sin theta sin 2 theta sin 4 theta=si...

    Text Solution

    |

  14. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |

  15. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  16. The total number of solution of |cotx|=cotx+1/(sinx),x in [0,3pi] , is...

    Text Solution

    |

  17. Let alphaa n dbeta be any two positive values of x for which 2cosx ,|c...

    Text Solution

    |

  18. The number of values of theta satisfying 4 cos theta+3 sin theta=5 as ...

    Text Solution

    |

  19. The general solution of cos x cos 6x =-1 is

    Text Solution

    |

  20. The number of solution the equation cos(theta)cos(pitheta)=1 has 0 (b)...

    Text Solution

    |