Home
Class 12
MATHS
For n in Z , the general solution of (s...

For `n in Z ,` the general solution of `(sqrt(3)-1)sintheta+(sqrt(3)+1)costheta=2i s(n in Z)` `theta=2npi+-pi/4+pi/(12)` `theta=npi+(-1)^npi/4+pi/(12)` `theta=2npi+-pi/4` `theta=npi+(-1)^npi/4-pi/(12)`

A

`theta=2npi pm pi/4+pi/12`

B

`theta=n pi +(-1)^(n) pi/4+pi/12`

C

`theta=2npi pm pi/4`

D

`theta=npi +(-1)^(n) pi/4- pi/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{3}-1)\sin\theta + (\sqrt{3}+1)\cos\theta = 2\) for \(\theta\) in terms of \(n \in \mathbb{Z}\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ (\sqrt{3}-1)\sin\theta + (\sqrt{3}+1)\cos\theta = 2 \] ### Step 2: Normalize the equation To simplify, we can divide the entire equation by \(2\sqrt{2}\): \[ \frac{\sqrt{3}-1}{2\sqrt{2}}\sin\theta + \frac{\sqrt{3}+1}{2\sqrt{2}}\cos\theta = \frac{2}{2\sqrt{2}} \] This simplifies to: \[ \frac{\sqrt{3}-1}{2\sqrt{2}}\sin\theta + \frac{\sqrt{3}+1}{2\sqrt{2}}\cos\theta = \frac{1}{\sqrt{2}} \] ### Step 3: Identify sine and cosine values We recognize that: \[ \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{2\sqrt{2}} \quad \text{and} \quad \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}+1}{2\sqrt{2}} \] Thus, we can rewrite the equation as: \[ \sin\left(\frac{\pi}{12}\right)\sin\theta + \cos\left(\frac{\pi}{12}\right)\cos\theta = \frac{1}{\sqrt{2}} \] ### Step 4: Use the cosine angle subtraction identity Using the cosine angle subtraction identity: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] we can express our equation as: \[ \cos\left(\theta - \frac{\pi}{12}\right) = \frac{1}{\sqrt{2}} \] ### Step 5: Solve for \(\theta\) The general solution for \(\cos x = k\) is given by: \[ x = 2n\pi \pm \alpha \] where \(\alpha = \frac{\pi}{4}\) (since \(\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}\)). Therefore, we have: \[ \theta - \frac{\pi}{12} = 2n\pi \pm \frac{\pi}{4} \] This leads to: \[ \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12} \] ### Step 6: Combine the terms To combine the terms, we need a common denominator: \[ \frac{\pi}{4} = \frac{3\pi}{12} \] Thus, we can rewrite: \[ \theta = 2n\pi \pm \left(\frac{3\pi}{12} + \frac{\pi}{12}\right) = 2n\pi \pm \frac{4\pi}{12} = 2n\pi \pm \frac{\pi}{3} \] ### Final General Solution Thus, the general solution for \(\theta\) is: \[ \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12} \] ### Conclusion The correct answer is: \[ \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12} \]

To solve the equation \((\sqrt{3}-1)\sin\theta + (\sqrt{3}+1)\cos\theta = 2\) for \(\theta\) in terms of \(n \in \mathbb{Z}\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ (\sqrt{3}-1)\sin\theta + (\sqrt{3}+1)\cos\theta = 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

For n in Z , the general solution of (sqrt(3)-1)sintheta+(sqrt(3)+1)costheta=2 is(n in Z) theta=2npi+-pi/4+pi/(12) theta=npi+(-1)^npi/4+pi/(12) theta=2npi+-pi/4 theta=npi+(-1)^npi/4-pi/(12)

A general solution of tan^2theta+cos2theta=1 is (n in Z) npi=pi/4 (b) 2npi+pi/4 npi+pi/4 (d) npi

Solution of the equation sin(sqrt(1+sin2theta))=sintheta+costhetai s(n in Z) npi-pi/4 (b) npi+pi/(12) (c) npi+pi/6 (d) none of these

General solution of tan5theta=cot2theta is a. (npi)/7+pi/2^(\ ) b. theta=(npi)/7+pi/3 c. theta=(npi)/7+pi/(14) d. theta=(npi)/7-pi/(14)

The general solution of the equation 7cos^2theta+3sin^2theta=4 is theta=2npi+-pi/6,\ n Z b. theta=2npi+-(2pi)/3,\ n Z c. theta=2npi+-pi/3,\ n Z d. none of these

The general value of theta satisfying cot theta=-sqrt(3) and cos theta = sqrt(3)/2 is (A) npi+pi/3 (B) npi- pi/3 (C) 2npi+pi/6 (D) 2npi- pi/6

The sum of all the solutions of cottheta=sin2theta(theta!=npi, n in t ege r) , 0lt=thetalt=pi, is (3pi)/2 (b) pi (c) 3 pi/4 (d) 2pi

Prove that the general solution of cos"theta"=cos"alpha" is given by : theta=2npi+-alpha, where n in Zdot

The most general value for which tantheta=-1 and costheta=1/(sqrt(2)) is ( n in Z) (A) npi+(7pi)/4 (B) npi+(-1)^n(7pi)/4 (C) 2npi+(7pi)/4 (D) none of these

The sum of all the solutions of cottheta=sin2theta(theta!=npi, n integer) , 0lt=thetalt=pi, is (a) (3pi)/2 (b) pi (c) 3 pi/4 (d) 2pi

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Single Correct Answer Type)
  1. If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

    Text Solution

    |

  2. The general solution of 4 sin^4 x + cos^4x= 1 is

    Text Solution

    |

  3. For n in Z , the general solution of (sqrt(3)-1)sintheta+(sqrt(3)+1)c...

    Text Solution

    |

  4. The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(p...

    Text Solution

    |

  5. One of the general solutions of 4 sin theta sin 2 theta sin 4 theta=si...

    Text Solution

    |

  6. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |

  7. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  8. The total number of solution of |cotx|=cotx+1/(sinx),x in [0,3pi] , is...

    Text Solution

    |

  9. Let alphaa n dbeta be any two positive values of x for which 2cosx ,|c...

    Text Solution

    |

  10. The number of values of theta satisfying 4 cos theta+3 sin theta=5 as ...

    Text Solution

    |

  11. The general solution of cos x cos 6x =-1 is

    Text Solution

    |

  12. The number of solution the equation cos(theta)cos(pitheta)=1 has 0 (b)...

    Text Solution

    |

  13. Let theta in [0,4pi] satisfy the equation (sintheta+2)(sintheta+3)(sin...

    Text Solution

    |

  14. The number of solutions of sum(r=1)^5cosrx=5 in the interval [0,2pi] i...

    Text Solution

    |

  15. If cos 3x+sin (2x-(7pi)/6)=-2, then x is equal to (k in Z)

    Text Solution

    |

  16. The general solution of the equation sin^(100)x-cos^(100)x=1 is (a)2np...

    Text Solution

    |

  17. The sum of all the solution in [0,4pi] of the equation tanx+cotx+1=cos...

    Text Solution

    |

  18. The total number of solutions of loge |sin x| = -x^2 +2x in [0,pi] is...

    Text Solution

    |

  19. The total number of solution of sin{x}=cos{x} (where {} denotes the fr...

    Text Solution

    |

  20. The set of all x in ((-pi)/2,pi/2) satisfying |4sinx-1| < sqrt(5) is g...

    Text Solution

    |