Home
Class 12
MATHS
Let alphaa n dbeta be any two positive v...

Let `alphaa n dbeta` be any two positive values of `x` for which `2cosx ,|cosx|,` and `1-3cos^2x` are in G.P. The minimum value of `|alpha-beta|` is `pi/3` (b) `pi/4` (c) `pi/2` (d) none of these

A

`pi/3`

B

`pi/4`

C

`pi/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the positive values of \( x \) for which the terms \( 2 \cos x \), \( |\cos x| \), and \( 1 - 3 \cos^2 x \) are in geometric progression (G.P.). ### Step 1: Set up the condition for G.P. For three terms \( a, b, c \) to be in G.P., the condition is: \[ b^2 = ac \] Here, let \( a = 2 \cos x \), \( b = |\cos x| \), and \( c = 1 - 3 \cos^2 x \). Therefore, we have: \[ |\cos x|^2 = (2 \cos x)(1 - 3 \cos^2 x) \] ### Step 2: Simplify the equation Since \( \cos x \) is positive in the first quadrant, we can drop the absolute value: \[ \cos^2 x = 2 \cos x (1 - 3 \cos^2 x) \] Expanding the right side: \[ \cos^2 x = 2 \cos x - 6 \cos^3 x \] ### Step 3: Rearranging the equation Rearranging gives us: \[ 6 \cos^3 x + \cos^2 x - 2 \cos x = 0 \] Factoring out \( \cos x \): \[ \cos x (6 \cos^2 x + \cos x - 2) = 0 \] ### Step 4: Solve for \( \cos x \) This gives us two cases: 1. \( \cos x = 0 \) 2. \( 6 \cos^2 x + \cos x - 2 = 0 \) For the first case, \( \cos x = 0 \) gives \( x = \frac{\pi}{2} \). For the second case, we can use the quadratic formula: \[ \cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a = 6, b = 1, c = -2 \): \[ \cos x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 6 \cdot (-2)}}{2 \cdot 6} = \frac{-1 \pm \sqrt{1 + 48}}{12} = \frac{-1 \pm 7}{12} \] Calculating the roots: 1. \( \cos x = \frac{6}{12} = \frac{1}{2} \) (valid) 2. \( \cos x = \frac{-8}{12} = -\frac{2}{3} \) (not valid since we need positive values) ### Step 5: Find the angles The valid solutions for \( \cos x \) are: 1. \( \cos x = \frac{1}{2} \) gives \( x = \frac{\pi}{3} \) 2. \( \cos x = 0 \) gives \( x = \frac{\pi}{2} \) ### Step 6: Calculate \( |\alpha - \beta| \) Let \( \alpha = \frac{\pi}{2} \) and \( \beta = \frac{\pi}{3} \): \[ |\alpha - \beta| = \left| \frac{\pi}{2} - \frac{\pi}{3} \right| = \left| \frac{3\pi}{6} - \frac{2\pi}{6} \right| = \left| \frac{\pi}{6} \right| \] ### Conclusion The minimum value of \( |\alpha - \beta| \) is \( \frac{\pi}{6} \), which is not listed in the options provided. Therefore, the answer is: **(d) none of these.**

To solve the problem, we need to find the positive values of \( x \) for which the terms \( 2 \cos x \), \( |\cos x| \), and \( 1 - 3 \cos^2 x \) are in geometric progression (G.P.). ### Step 1: Set up the condition for G.P. For three terms \( a, b, c \) to be in G.P., the condition is: \[ b^2 = ac \] Here, let \( a = 2 \cos x \), \( b = |\cos x| \), and \( c = 1 - 3 \cos^2 x \). Therefore, we have: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be any two positive values of x for which 2"cos"x, |"cos"x| " and " 1-3"cos"^(2) x are in G.P. The minimum value of |alpha -beta| , is

Let alpha and beta be any two positve values of x for which 2 cos x, | cos x| and 1-3 cos^(2)x are in GP. The minium value of |alpha+beta| is

If x , y in [0,2pi]a n dsinx+siny=2, then the value of x+y is pi (b) pi/2 (c) 3pi (d) none of these

Let alpha, beta be two distinct values of x lying in (0,pi) for which sqrt5 sin x, 10 sin x, 10 (4 sin ^(2) x+1) are 3 consecutive terms of a G.P. Then minimum value of |alpha - beta|=

If cos^2 2x+2cos^2x=1,\ x in (-pi,pi), then x can take the values : +-pi/2 (b) +-pi/4 +-(3pi)/4 (d) none of these

If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a) 11-(pi)/2 (b) (pi)/2-11 (c) (5pi)/2-11 (d) none of these

If (costheta+cos2theta)^3=cos^3theta+cos^3 2theta, then the least positive value of theta is equal to pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (4pi)/3 (d) (5pi)/3 (e) none of these

If 2|sin2alpha|=|tanbeta+cotbeta|,alpha,beta in (pi/2,pi), then the value of alpha+beta is (a) (3pi)/4 (b) pi (c) (3pi)/2 (d) (5pi)/4

if 2sec2alpha=tan beta+cot beta then one of the value of alpha+beta is (A) pi (B) npi- pi/4, n in ZZ (C) pi/4 (D) pi/2

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Single Correct Answer Type)
  1. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  2. The total number of solution of |cotx|=cotx+1/(sinx),x in [0,3pi] , is...

    Text Solution

    |

  3. Let alphaa n dbeta be any two positive values of x for which 2cosx ,|c...

    Text Solution

    |

  4. The number of values of theta satisfying 4 cos theta+3 sin theta=5 as ...

    Text Solution

    |

  5. The general solution of cos x cos 6x =-1 is

    Text Solution

    |

  6. The number of solution the equation cos(theta)cos(pitheta)=1 has 0 (b)...

    Text Solution

    |

  7. Let theta in [0,4pi] satisfy the equation (sintheta+2)(sintheta+3)(sin...

    Text Solution

    |

  8. The number of solutions of sum(r=1)^5cosrx=5 in the interval [0,2pi] i...

    Text Solution

    |

  9. If cos 3x+sin (2x-(7pi)/6)=-2, then x is equal to (k in Z)

    Text Solution

    |

  10. The general solution of the equation sin^(100)x-cos^(100)x=1 is (a)2np...

    Text Solution

    |

  11. The sum of all the solution in [0,4pi] of the equation tanx+cotx+1=cos...

    Text Solution

    |

  12. The total number of solutions of loge |sin x| = -x^2 +2x in [0,pi] is...

    Text Solution

    |

  13. The total number of solution of sin{x}=cos{x} (where {} denotes the fr...

    Text Solution

    |

  14. The set of all x in ((-pi)/2,pi/2) satisfying |4sinx-1| < sqrt(5) is g...

    Text Solution

    |

  15. If roots of the equation 2x^2-4x+2sintheta-1=0 are of opposite sign, t...

    Text Solution

    |

  16. If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z, then

    Text Solution

    |

  17. Which of the following is not the solution of the equation sin 5x=16 s...

    Text Solution

    |

  18. The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2)...

    Text Solution

    |

  19. One root of the equation cos x-x+1/2=0 lies in the interval (A...

    Text Solution

    |

  20. The smallest positive x satisfying the equation (log)(cosx)sinx+(log)(...

    Text Solution

    |