Home
Class 12
MATHS
The set of all x in ((-pi)/2,pi/2) satis...

The set of all x in `((-pi)/2,pi/2)` satisfying `|4sinx-1| < sqrt(5)` is given by
(a) `(-pi/(10),(3pi)/(10))` (b) `(pi/(10),(3pi)/(10))` (c) `(pi/(10),(3pi)/(10))` (d) none of these

A

`(- pi/10, (3pi)/10)`

B

`(pi/10, (3pi)/10)`

C

`(pi/10, (3pi)/10)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |4\sin x - 1| < \sqrt{5} \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Remove the Absolute Value The inequality \( |4\sin x - 1| < \sqrt{5} \) can be split into two separate inequalities: \[ - \sqrt{5} < 4\sin x - 1 < \sqrt{5} \] ### Step 2: Solve the Two Inequalities We can solve these inequalities separately. 1. **First Inequality:** \[ 4\sin x - 1 < \sqrt{5} \] Adding 1 to both sides: \[ 4\sin x < \sqrt{5} + 1 \] Dividing by 4: \[ \sin x < \frac{\sqrt{5} + 1}{4} \] 2. **Second Inequality:** \[ -\sqrt{5} < 4\sin x - 1 \] Adding 1 to both sides: \[ -\sqrt{5} + 1 < 4\sin x \] Dividing by 4: \[ \frac{-\sqrt{5} + 1}{4} < \sin x \] ### Step 3: Evaluate the Bounds Now we need to evaluate the bounds \( \frac{-\sqrt{5} + 1}{4} \) and \( \frac{\sqrt{5} + 1}{4} \). 1. **Calculate \( \frac{\sqrt{5} + 1}{4} \):** - The approximate value of \( \sqrt{5} \) is about 2.236, so: \[ \frac{\sqrt{5} + 1}{4} \approx \frac{2.236 + 1}{4} \approx \frac{3.236}{4} \approx 0.809 \] 2. **Calculate \( \frac{-\sqrt{5} + 1}{4} \):** \[ \frac{-\sqrt{5} + 1}{4} \approx \frac{-2.236 + 1}{4} \approx \frac{-1.236}{4} \approx -0.309 \] ### Step 4: Set Up the Final Inequality Now we have: \[ \frac{-\sqrt{5} + 1}{4} < \sin x < \frac{\sqrt{5} + 1}{4} \] which translates to: \[ -0.309 < \sin x < 0.809 \] ### Step 5: Find the Corresponding \( x \) Values We need to find the values of \( x \) for which \( \sin x \) is in this range. 1. **For \( \sin x = -0.309 \):** - The angle \( x \) corresponding to \( \sin x = -0.309 \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) is approximately \( -\frac{\pi}{10} \). 2. **For \( \sin x = 0.809 \):** - The angle \( x \) corresponding to \( \sin x = 0.809 \) is approximately \( \frac{3\pi}{10} \). ### Step 6: Final Interval Thus, the solution set for \( x \) is: \[ x \in \left(-\frac{\pi}{10}, \frac{3\pi}{10}\right) \] ### Conclusion The correct answer is: **(a) \( \left(-\frac{\pi}{10}, \frac{3\pi}{10}\right) \)** ---

To solve the inequality \( |4\sin x - 1| < \sqrt{5} \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can follow these steps: ### Step 1: Remove the Absolute Value The inequality \( |4\sin x - 1| < \sqrt{5} \) can be split into two separate inequalities: \[ - \sqrt{5} < 4\sin x - 1 < \sqrt{5} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.9|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The set of all x in ((-pi)/2,pi/2) satisfying |4sinx-1| < sqrt(5) is given by

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (a) (pi/4,(3pi)/4) (b) [pi/4,(3pi)/4] (c) {pi/4,(3pi)/4} (d) none of these

Prove that: cos(pi/10)-sin(pi/10)=sqrt(2)sin((3pi)/(20))

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (4pi)/3 (d) (5pi)/3 (e) none of these

The value of sin^(-1)(cos(33pi)/5) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

The value of sin^(-1)(cos((33pi)/5)) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a) 11-(pi)/2 (b) (pi)/2-11 (c) (5pi)/2-11 (d) none of these

S_(10) = cos'(pi)/(180) + cos'(3pi)/(180) + "….." cos '(19pi)/(180)

The value of sin""(pi)/(10)sin""(13pi)/(10) is

If cos(sinx)=0, then x lies in (a) (pi/4,pi/2)uu(pi/2,\ pi) (b) (-pi/4,\ 0) (c) (pi,(3pi)/2) (d) null set

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Single Correct Answer Type)
  1. The total number of solutions of loge |sin x| = -x^2 +2x in [0,pi] is...

    Text Solution

    |

  2. The total number of solution of sin{x}=cos{x} (where {} denotes the fr...

    Text Solution

    |

  3. The set of all x in ((-pi)/2,pi/2) satisfying |4sinx-1| < sqrt(5) is g...

    Text Solution

    |

  4. If roots of the equation 2x^2-4x+2sintheta-1=0 are of opposite sign, t...

    Text Solution

    |

  5. If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z, then

    Text Solution

    |

  6. Which of the following is not the solution of the equation sin 5x=16 s...

    Text Solution

    |

  7. The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2)...

    Text Solution

    |

  8. One root of the equation cos x-x+1/2=0 lies in the interval (A...

    Text Solution

    |

  9. The smallest positive x satisfying the equation (log)(cosx)sinx+(log)(...

    Text Solution

    |

  10. The number of ordered pairs which satisfy the equation x^2+2xsin(x y)+...

    Text Solution

    |

  11. Consider the system of linear equations in x, y, and z: (sin 3 theta...

    Text Solution

    |

  12. The equation sin^4x-2cos^2x+a^2=0 can be solved if

    Text Solution

    |

  13. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  14. sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to...

    Text Solution

    |

  15. The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where...

    Text Solution

    |

  16. The equation cos^8 x + b cos^4 x + 1 = 0 will have a solution if b be...

    Text Solution

    |

  17. The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+...

    Text Solution

    |

  18. If both the distinct roots of the equation |sinx|^2+|sinx|+b=0in[0,pi]...

    Text Solution

    |

  19. e^(|sinx|)+e^(-|sinx|)+4a=0 will have exactly four different solutions...

    Text Solution

    |

  20. The equation tan^4x-2sec^2x+a=0 will have at least one solution if 1<a...

    Text Solution

    |