Home
Class 12
MATHS
Consider the cubic equation x^3-(1+cos t...

Consider the cubic equation `x^3-(1+cos theta+sin theta)x^2+(cos theta sin theta+cos theta+sin theta)x-sin theta. cos theta =0` Whose roots are `x_1, x_2 and x_3`

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the cubic equation \[ x^3 - (1 + \cos \theta + \sin \theta)x^2 + (\cos \theta \sin \theta + \cos \theta + \sin \theta)x - \sin \theta \cos \theta = 0 \] whose roots are \( x_1, x_2, \) and \( x_3 \), we will use Vieta's formulas, which relate the coefficients of the polynomial to sums and products of its roots. ### Step 1: Identify coefficients The given cubic equation can be compared to the general form of a cubic equation: \[ ax^3 + bx^2 + cx + d = 0 \] From the equation, we identify: - \( a = 1 \) - \( b = -(1 + \cos \theta + \sin \theta) \) - \( c = \cos \theta \sin \theta + \cos \theta + \sin \theta \) - \( d = -\sin \theta \cos \theta \) ### Step 2: Apply Vieta's Formulas According to Vieta's formulas for a cubic equation: 1. The sum of the roots \( x_1 + x_2 + x_3 = -\frac{b}{a} \) 2. The sum of the product of the roots taken two at a time \( x_1 x_2 + x_2 x_3 + x_3 x_1 = \frac{c}{a} \) 3. The product of the roots \( x_1 x_2 x_3 = -\frac{d}{a} \) Using these formulas, we can find the necessary values. ### Step 3: Calculate the sum of the roots Using the first formula: \[ x_1 + x_2 + x_3 = -\frac{-(1 + \cos \theta + \sin \theta)}{1} = 1 + \cos \theta + \sin \theta \] ### Step 4: Calculate the sum of the product of the roots taken two at a time Using the second formula: \[ x_1 x_2 + x_2 x_3 + x_3 x_1 = \frac{\cos \theta \sin \theta + \cos \theta + \sin \theta}{1} = \cos \theta \sin \theta + \cos \theta + \sin \theta \] ### Step 5: Calculate the product of the roots Using the third formula: \[ x_1 x_2 x_3 = -\frac{-\sin \theta \cos \theta}{1} = \sin \theta \cos \theta \] ### Step 6: Find \( x_1^2 + x_2^2 + x_3^2 \) We can use the identity: \[ x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1 x_2 + x_2 x_3 + x_3 x_1) \] Substituting the values we found: 1. \( (x_1 + x_2 + x_3)^2 = (1 + \cos \theta + \sin \theta)^2 \) 2. \( 2(x_1 x_2 + x_2 x_3 + x_3 x_1) = 2(\cos \theta \sin \theta + \cos \theta + \sin \theta) \) Calculating \( (1 + \cos \theta + \sin \theta)^2 \): \[ = 1 + 2(\cos \theta + \sin \theta) + (\cos^2 \theta + \sin^2 \theta) = 1 + 2(\cos \theta + \sin \theta) + 1 = 2 + 2(\cos \theta + \sin \theta) \] Now substituting back: \[ x_1^2 + x_2^2 + x_3^2 = (2 + 2(\cos \theta + \sin \theta)) - 2(\cos \theta \sin \theta + \cos \theta + \sin \theta) \] \[ = 2 + 2(\cos \theta + \sin \theta) - 2\cos \theta \sin \theta - 2(\cos \theta + \sin \theta) \] \[ = 2 - 2\cos \theta \sin \theta \] ### Final Result Thus, the final expression for \( x_1^2 + x_2^2 + x_3^2 \) is: \[ x_1^2 + x_2^2 + x_3^2 = 2 - 2\cos \theta \sin \theta \]

To solve the cubic equation \[ x^3 - (1 + \cos \theta + \sin \theta)x^2 + (\cos \theta \sin \theta + \cos \theta + \sin \theta)x - \sin \theta \cos \theta = 0 \] whose roots are \( x_1, x_2, \) and \( x_3 \), we will use Vieta's formulas, which relate the coefficients of the polynomial to sums and products of its roots. ### Step 1: Identify coefficients The given cubic equation can be compared to the general form of a cubic equation: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE MAIN) Single correct Answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Prove that (cos^3theta+sin^3 theta)/(cos theta+sin theta)+(cos^3 theta-sin^3 theta)/(cos theta-sin theta)=2

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

If cos theta + sin theta =sqrt(2) cos theta prove that cos theta -sin theta =sqrt(2) sin theta

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Linked comprehension type)
  1. Cosider the cubic equation : x^3-(1+costheta+sintheta)x^2+(costhetasin...

    Text Solution

    |

  2. Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta ...

    Text Solution

    |

  3. Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta ...

    Text Solution

    |

  4. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  5. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  6. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  7. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  8. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  9. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  10. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) The nu...

    Text Solution

    |

  11. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) One of...

    Text Solution

    |

  12. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) If x t...

    Text Solution

    |

  13. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  14. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  15. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  16. Let S(1) be the set of all those solution of the equation (1+a) cos th...

    Text Solution

    |

  17. Let S(1) be the set of all those solution of the equation (1+a) cos th...

    Text Solution

    |

  18. All the permissible value of b ,a=sin(2x-b)if a=0 and x=S(2) is a subs...

    Text Solution

    |

  19. For what values of 'b' does the equation ( b cos x)/( 2 cos 2x -1) =( ...

    Text Solution

    |

  20. For what values of 'b' does the equation ( b cos x)/( 2 cos 2x -1) =( ...

    Text Solution

    |