Home
Class 12
MATHS
Cosider the equation int(0)^(x) (t^(2)-8...

Cosider the equation `int_(0)^(x) (t^(2)-8t+13)dt= x sin (a//x)`
If x takes the values for which the equation has a solution, then the number of values of `a in [0, 100]` is

A

`y in [-5, 7]`

B

`y in [-7, 5]`

C

`y in [5, 7]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{0}^{x} (t^2 - 8t + 13) \, dt = x \sin\left(\frac{a}{x}\right), \] we will follow these steps: ### Step 1: Compute the Left-Hand Side (LHS) We need to evaluate the integral on the left-hand side: \[ \int_{0}^{x} (t^2 - 8t + 13) \, dt. \] Calculating the integral: \[ \int (t^2 - 8t + 13) \, dt = \frac{t^3}{3} - 4t^2 + 13t. \] Now, we evaluate this from \(0\) to \(x\): \[ \left[\frac{x^3}{3} - 4x^2 + 13x\right] - \left[\frac{0^3}{3} - 4(0^2) + 13(0)\right] = \frac{x^3}{3} - 4x^2 + 13x. \] Thus, the LHS becomes: \[ \frac{x^3}{3} - 4x^2 + 13x. \] ### Step 2: Set Up the Equation Now, we set the LHS equal to the right-hand side (RHS): \[ \frac{x^3}{3} - 4x^2 + 13x = x \sin\left(\frac{a}{x}\right). \] ### Step 3: Simplify the Equation We can divide both sides by \(x\) (assuming \(x \neq 0\)): \[ \frac{x^2}{3} - 4x + 13 = \sin\left(\frac{a}{x}\right). \] ### Step 4: Analyze the Function Let \[ f(x) = \frac{x^2}{3} - 4x + 13. \] This is a quadratic function that opens upwards. We can find its vertex to determine its minimum value. The vertex \(x\) coordinate is given by: \[ x = -\frac{b}{2a} = -\frac{-4}{2 \cdot \frac{1}{3}} = 6. \] Now, substituting \(x = 6\) into \(f(x)\): \[ f(6) = \frac{6^2}{3} - 4(6) + 13 = \frac{36}{3} - 24 + 13 = 12 - 24 + 13 = 1. \] ### Step 5: Determine the Range of \(f(x)\) Since \(f(x)\) is a quadratic function that opens upwards, its minimum value is \(1\) at \(x = 6\). As \(x\) approaches \(0\) or increases indefinitely, \(f(x)\) will also increase indefinitely. ### Step 6: Set the Condition for \(\sin\left(\frac{a}{x}\right)\) Since \(\sin\left(\frac{a}{x}\right)\) can only take values in the range \([-1, 1]\), we set the condition: \[ f(x) \leq 1. \] This leads to: \[ \frac{x^2}{3} - 4x + 12 \leq 0. \] ### Step 7: Solve the Quadratic Inequality To solve the quadratic inequality: \[ x^2 - 12x + 36 \leq 0, \] we can factor it: \[ (x - 6)^2 \leq 0. \] This implies: \[ x = 6. \] ### Step 8: Find Values of \(a\) Substituting \(x = 6\) into the equation: \[ \sin\left(\frac{a}{6}\right) = 1. \] This occurs when: \[ \frac{a}{6} = \frac{\pi}{2} + 2n\pi \quad \text{for } n \in \mathbb{Z}. \] Thus, \[ a = 3\pi + 12n\pi. \] ### Step 9: Determine the Values of \(a\) in the Range \([0, 100]\) We need to find integer values of \(n\) such that: \[ 0 \leq 3\pi + 12n\pi \leq 100. \] Calculating the bounds: \[ 3\pi \approx 9.42 \quad \Rightarrow \quad 12n\pi \leq 100 - 9.42 \quad \Rightarrow \quad 12n\pi \leq 90.58 \quad \Rightarrow \quad n \leq \frac{90.58}{12\pi} \approx 2.4. \] Thus, \(n\) can take values \(0, 1, 2\). Calculating the corresponding values of \(a\): - For \(n = 0\): \(a = 3\pi \approx 9.42\) - For \(n = 1\): \(a = 15\pi \approx 47.12\) - For \(n = 2\): \(a = 27\pi \approx 84.82\) ### Conclusion Thus, there are **3 values of \(a\)** in the range \([0, 100]\).

To solve the equation \[ \int_{0}^{x} (t^2 - 8t + 13) \, dt = x \sin\left(\frac{a}{x}\right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE MAIN) Single correct Answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Cosider the equation int_(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) The number of real values of x for which the equation has solution is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

The equation int_0^x (t^2-8t+13)dt=xsin(a/x) has a solution if sin(a/6) is (A) zero (B) -1 (C) 1 (D) none of these

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

2x^2 -4x=t In the equation above, t is a constant. If the equation has no real solutions, which of the following could be the value of t ?

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Linked comprehension type)
  1. Cosider the cubic equation : x^3-(1+costheta+sintheta)x^2+(costhetasin...

    Text Solution

    |

  2. Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta ...

    Text Solution

    |

  3. Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta ...

    Text Solution

    |

  4. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  5. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  6. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  7. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  8. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  9. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  10. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) The nu...

    Text Solution

    |

  11. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) One of...

    Text Solution

    |

  12. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) If x t...

    Text Solution

    |

  13. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  14. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  15. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  16. Let S(1) be the set of all those solution of the equation (1+a) cos th...

    Text Solution

    |

  17. Let S(1) be the set of all those solution of the equation (1+a) cos th...

    Text Solution

    |

  18. All the permissible value of b ,a=sin(2x-b)if a=0 and x=S(2) is a subs...

    Text Solution

    |

  19. For what values of 'b' does the equation ( b cos x)/( 2 cos 2x -1) =( ...

    Text Solution

    |

  20. For what values of 'b' does the equation ( b cos x)/( 2 cos 2x -1) =( ...

    Text Solution

    |