Home
Class 12
MATHS
Number of solutions (s) of the equation ...

Number of solutions (s) of the equation `(sin x)/(cos 3x) +(sin 3x)/(cos 9x)+(sin 9x)/(cos 27 x)=0` in the interval `(0, pi/4)` is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sin x}{\cos 3x} + \frac{\sin 3x}{\cos 9x} + \frac{\sin 9x}{\cos 27x} = 0 \] in the interval \( (0, \frac{\pi}{4}) \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \frac{\sin x}{\cos 3x} + \frac{\sin 3x}{\cos 9x} + \frac{\sin 9x}{\cos 27x} = 0 \] ### Step 2: Multiply by Cosine Terms To eliminate the denominators, we can multiply through by \(\cos 3x \cdot \cos 9x \cdot \cos 27x\): \[ \sin x \cdot \cos 9x \cdot \cos 27x + \sin 3x \cdot \cos 3x \cdot \cos 27x + \sin 9x \cdot \cos 3x \cdot \cos 9x = 0 \] ### Step 3: Use Trigonometric Identities Using the identity \(2 \sin A \cos A = \sin 2A\), we can rewrite the terms: - \(\sin x \cdot \cos 9x \cdot \cos 27x\) can be expressed as \(\frac{1}{2} \sin 2x \cdot \cos 9x \cdot \cos 27x\) - \(\sin 3x \cdot \cos 3x \cdot \cos 27x\) can be expressed as \(\frac{1}{2} \sin 6x \cdot \cos 27x\) - \(\sin 9x \cdot \cos 3x \cdot \cos 9x\) can be expressed as \(\frac{1}{2} \sin 18x\) Thus, the equation simplifies to: \[ \frac{1}{2} \left( \sin 2x \cdot \cos 9x \cdot \cos 27x + \sin 6x \cdot \cos 27x + \sin 18x \right) = 0 \] ### Step 4: Set Each Term to Zero For the equation to hold, we need: \[ \sin 2x \cdot \cos 9x \cdot \cos 27x + \sin 6x \cdot \cos 27x + \sin 18x = 0 \] ### Step 5: Analyze Each Term We can analyze the zeros of each sine function: 1. \(\sin 2x = 0\) gives \(2x = n\pi \Rightarrow x = \frac{n\pi}{2}\) 2. \(\sin 6x = 0\) gives \(6x = m\pi \Rightarrow x = \frac{m\pi}{6}\) 3. \(\sin 18x = 0\) gives \(18x = k\pi \Rightarrow x = \frac{k\pi}{18}\) ### Step 6: Find Solutions in the Interval Now we need to find the values of \(n\), \(m\), and \(k\) such that \(x\) lies in the interval \( (0, \frac{\pi}{4}) \): - For \(x = \frac{n\pi}{2}\): The only valid \(n\) is \(n=0\) (gives \(x=0\)), which is not in the interval. - For \(x = \frac{m\pi}{6}\): Valid values are \(m=1, 2, 3, 4\) (gives \(x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}\)), only \(m=1\) is valid (gives \(x=\frac{\pi}{6}\)). - For \(x = \frac{k\pi}{18}\): Valid values are \(k=1, 2, 3, 4, 5, 6\) (gives \(x = \frac{\pi}{18}, \frac{2\pi}{18}, \frac{3\pi}{18}, \frac{4\pi}{18}, \frac{5\pi}{18}, \frac{6\pi}{18}\)), which gives \(k=1, 2, 3, 4, 5, 6\) (gives \(x=\frac{\pi}{18}, \frac{\pi}{9}, \frac{5\pi}{18}, \frac{2\pi}{9}, \frac{5\pi}{18}, \frac{\pi/3}\)). ### Step 7: Count the Valid Solutions The valid solutions in the interval \( (0, \frac{\pi}{4}) \) are: 1. \(x = \frac{\pi}{18}\) 2. \(x = \frac{2\pi}{18} = \frac{\pi}{9}\) 3. \(x = \frac{3\pi}{18} = \frac{\pi}{6}\) 4. \(x = \frac{4\pi}{18} = \frac{2\pi}{9}\) 5. \(x = \frac{5\pi}{18}\) 6. \(x = \frac{6\pi}{18} = \frac{\pi}{3}\) Thus, the total number of solutions in the interval \( (0, \frac{\pi}{4}) \) is **6**. ### Final Answer The number of solutions \(s\) of the equation in the interval \( (0, \frac{\pi}{4}) \) is **6**.

To solve the equation \[ \frac{\sin x}{\cos 3x} + \frac{\sin 3x}{\cos 9x} + \frac{\sin 9x}{\cos 27x} = 0 \] in the interval \( (0, \frac{\pi}{4}) \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE MAIN) Single correct Answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE ADVANSED) Single correct answer type)|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27x)=0 in the interval (0,pi/4) is____________

The number of solutions of the equation "sin" x = "cos" 3x " in " [0, pi] is

Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(tan27 x-tanx)

Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(tan27 x-tanx)

The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] is

The number of solutions of the equation "sin x = |"cos" 3x| "in" [0, pi] , is

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

Number of solutions of the equation sin x + cos x-2sqrt(2) sin x cos x=0 for x in [0, pi] is

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of solution of the equation |cos x|=cos x-2 sin x "in"[0,6 pi] is

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Numerical value type)
  1. If log(0.5) sin x=1-log(0.5) cos x, then the number of solutions of x ...

    Text Solution

    |

  2. Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a ...

    Text Solution

    |

  3. Number of solutions (s) of the equation (sin x)/(cos 3x) +(sin 3x)/(co...

    Text Solution

    |

  4. Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=...

    Text Solution

    |

  5. Number of integral value(s) of m for which the equation sinx-sqrt(3)co...

    Text Solution

    |

  6. The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi...

    Text Solution

    |

  7. If cos4x=a0+a1cos^2x+a^2cos^4x is true for all values of x in R , the...

    Text Solution

    |

  8. Number of integral values of a for which the equation cos^2x-sinx+a=0 ...

    Text Solution

    |

  9. Number of roots of the equation 2^(tan(x-pi/4))-2(0. 25)^sin^(3((x-pi/...

    Text Solution

    |

  10. The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 ...

    Text Solution

    |

  11. Let k be sum of all x in the interval [0, 2pi] such that 3 cot^(2) x+8...

    Text Solution

    |

  12. If theta in [0,5pi]a n dr in R such that 2sintheta=r^4-2r^2+3 then th...

    Text Solution

    |

  13. If 2tan^2x-5secx=1 is satisfied by exactly seven distinct values of x ...

    Text Solution

    |

  14. If sinx+sinygeqcosacosxAA in R , then siny+cosa is equal to

    Text Solution

    |

  15. If sin(sinx+cosx)=cos(cosx-sinx), and largest possible value of sinx ...

    Text Solution

    |

  16. The number of solutions of the equation 1+cosx+cos2x+sinx+sin2x+sin3x=...

    Text Solution

    |

  17. the least value of 'a' for which the equation 2sqrt(a) sin^(2) x+sqrt(...

    Text Solution

    |

  18. The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y...

    Text Solution

    |

  19. Find the total no. of orderd pairs (x,y) satisfying x(sin^2 x+ 1/x^2)...

    Text Solution

    |

  20. Number of solutions of the equation cos 5x xx tan (6|x|)+sin 5x=0 lyin...

    Text Solution

    |