Home
Class 12
MATHS
Let k be sum of all x in the interval [0...

Let `k` be sum of all x in the interval `[0, 2pi]` such that `3 cot^(2) x+8 cot x+3=0`, then the value of `k//pi` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 \cot^2 x + 8 \cot x + 3 = 0 \) and find the sum of all \( x \) in the interval \([0, 2\pi]\) such that this equation holds, we can follow these steps: ### Step 1: Substitute \( y = \cot x \) We start by letting \( y = \cot x \). This transforms our equation into: \[ 3y^2 + 8y + 3 = 0 \] ### Step 2: Use the quadratic formula To find the roots of the quadratic equation, we apply the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 3, b = 8, c = 3 \). Calculating the discriminant: \[ b^2 - 4ac = 8^2 - 4 \cdot 3 \cdot 3 = 64 - 36 = 28 \] Now substituting back into the formula: \[ y = \frac{-8 \pm \sqrt{28}}{2 \cdot 3} = \frac{-8 \pm 2\sqrt{7}}{6} = \frac{-4 \pm \sqrt{7}}{3} \] ### Step 3: Find the values of \( y \) Thus, the roots are: \[ y_1 = \frac{-4 + \sqrt{7}}{3}, \quad y_2 = \frac{-4 - \sqrt{7}}{3} \] ### Step 4: Find the corresponding \( x \) values Since \( y = \cot x \), we need to find \( x \) such that: \[ \cot x = y_1 \quad \text{and} \quad \cot x = y_2 \] The general solutions for \( x \) in terms of \( y \) are: \[ x = \cot^{-1}(y) + n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 5: Calculate \( x \) values in the interval \([0, 2\pi]\) For \( y_1 \): 1. \( x_1 = \cot^{-1}\left(\frac{-4 + \sqrt{7}}{3}\right) \) 2. \( x_2 = \cot^{-1}\left(\frac{-4 + \sqrt{7}}{3}\right) + \pi \) For \( y_2 \): 1. \( x_3 = \cot^{-1}\left(\frac{-4 - \sqrt{7}}{3}\right) \) 2. \( x_4 = \cot^{-1}\left(\frac{-4 - \sqrt{7}}{3}\right) + \pi \) ### Step 6: Sum the \( x \) values The sum of all \( x \) values is: \[ k = x_1 + x_2 + x_3 + x_4 \] \[ = \cot^{-1}\left(\frac{-4 + \sqrt{7}}{3}\right) + \left(\cot^{-1}\left(\frac{-4 + \sqrt{7}}{3}\right) + \pi\right) + \cot^{-1}\left(\frac{-4 - \sqrt{7}}{3}\right) + \left(\cot^{-1}\left(\frac{-4 - \sqrt{7}}{3}\right) + \pi\right) \] \[ = 2\cot^{-1}\left(\frac{-4 + \sqrt{7}}{3}\right) + 2\cot^{-1}\left(\frac{-4 - \sqrt{7}}{3}\right) + 2\pi \] \[ = 2\left(\cot^{-1}\left(\frac{-4 + \sqrt{7}}{3}\right) + \cot^{-1}\left(\frac{-4 - \sqrt{7}}{3}\right)\right) + 2\pi \] Using the property \( \cot^{-1}(a) + \cot^{-1}(b) = \pi \) when \( ab < 1 \) (which holds here), we find: \[ k = 2\pi + 2\pi = 4\pi \] ### Step 7: Find \( \frac{k}{\pi} \) Finally, we compute: \[ \frac{k}{\pi} = \frac{4\pi}{\pi} = 4 \] Thus, the value of \( \frac{k}{\pi} \) is \( \boxed{4} \).

To solve the equation \( 3 \cot^2 x + 8 \cot x + 3 = 0 \) and find the sum of all \( x \) in the interval \([0, 2\pi]\) such that this equation holds, we can follow these steps: ### Step 1: Substitute \( y = \cot x \) We start by letting \( y = \cot x \). This transforms our equation into: \[ 3y^2 + 8y + 3 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE MAIN) Single correct Answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE ADVANSED) Single correct answer type)|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Let the sum of all x in the interval [0, 2pi] such that 3 cot^(2) x+8 cot x+3=0 .

Find the values of x in the interval [0,2pi] for which 4sin^(2)x - 8 sinx+3 le0

In the interval (0,pi//2) the fucntion f(x)= tan^nx+cot^n x attains

All x satisfying the inequality (cot^(-1) x)^(2) - 7 (cot^(-1) x) + 10 gt0 lie in the interval

The number of values of x in [0, 2 pi] that satisfy "cot" x -"cosec"x = 2 "sin" x , is

The sum of the roots of the equation |sqrt3cos x-sinx|=2" in "[0, 4pi] is kpi , then the value of 6k is

Show that cot(pi/4+x)cot(pi/4-x)=1

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

In the interval (0,2 pi) , sum of all the roots of the equation sin(pi log_(3) (1/x)) = 0 is

The number of values of x in [-2pi, 2pi] which satisfy the equation "cosec x"=1+cot x is equal to

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Numerical value type)
  1. If log(0.5) sin x=1-log(0.5) cos x, then the number of solutions of x ...

    Text Solution

    |

  2. Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a ...

    Text Solution

    |

  3. Number of solutions (s) of the equation (sin x)/(cos 3x) +(sin 3x)/(co...

    Text Solution

    |

  4. Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=...

    Text Solution

    |

  5. Number of integral value(s) of m for which the equation sinx-sqrt(3)co...

    Text Solution

    |

  6. The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi...

    Text Solution

    |

  7. If cos4x=a0+a1cos^2x+a^2cos^4x is true for all values of x in R , the...

    Text Solution

    |

  8. Number of integral values of a for which the equation cos^2x-sinx+a=0 ...

    Text Solution

    |

  9. Number of roots of the equation 2^(tan(x-pi/4))-2(0. 25)^sin^(3((x-pi/...

    Text Solution

    |

  10. The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 ...

    Text Solution

    |

  11. Let k be sum of all x in the interval [0, 2pi] such that 3 cot^(2) x+8...

    Text Solution

    |

  12. If theta in [0,5pi]a n dr in R such that 2sintheta=r^4-2r^2+3 then th...

    Text Solution

    |

  13. If 2tan^2x-5secx=1 is satisfied by exactly seven distinct values of x ...

    Text Solution

    |

  14. If sinx+sinygeqcosacosxAA in R , then siny+cosa is equal to

    Text Solution

    |

  15. If sin(sinx+cosx)=cos(cosx-sinx), and largest possible value of sinx ...

    Text Solution

    |

  16. The number of solutions of the equation 1+cosx+cos2x+sinx+sin2x+sin3x=...

    Text Solution

    |

  17. the least value of 'a' for which the equation 2sqrt(a) sin^(2) x+sqrt(...

    Text Solution

    |

  18. The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y...

    Text Solution

    |

  19. Find the total no. of orderd pairs (x,y) satisfying x(sin^2 x+ 1/x^2)...

    Text Solution

    |

  20. Number of solutions of the equation cos 5x xx tan (6|x|)+sin 5x=0 lyin...

    Text Solution

    |