Home
Class 12
MATHS
Let varphi,phi in [0,2pi] be such that 2...

Let `varphi,phi in [0,2pi]` be such that `2costheta(1-sinphi)=sin^2theta(tantheta/2+cottheta//2)"cos"phi-1,"tan"(2pi-theta)>0` `and −1<"sinθ"< −sqrt3/2 ` then φ lies between

A

`0 lt phi lt pi/2`

B

`pi/2 lt phi lt (4pi)/3`

C

`(4pi)/3 lt phi lt (3pi)/2`

D

`(3pi)/2 lt phi lt 2pi`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`2 cos theta (1- sin phi)=(2 sin^(2) theta)/( sin theta) cos phi -1`
`=2 sin cos phi -1`
`:. 2 cos theta-2 cos theta sin phi=2 sin theta cos phi-1`
`:. 2 cos theta +1 =2 sin (theta+phi)` ...(i)
`tan (2pi -theta) gt 0`
`rArr tan theta lt 0`
and `-1 lt sin theta lt - sqrt(3)/2`
`rArr theta in ((3pi)/2, (5pi)/3)`
`rArr 0 lt cos theta lt 1/2`
`rArr 1/2 lt sin (theta + phi) lt 1` (from (i))
`rArr pi/6+2pi lt theta + phi lt (5pi)/6 +2pi`
`2pi +pi/6- theta_("max") lt phi lt 2pi + (5pi)/6 - theta_(min)`
`rArr pi/2 lt phi lt (4pi)/3`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Linked comprehension type)|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE ADVANSED) Single correct answer type)|3 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that (1+costheta-sin^(2)theta)/(sintheta(1+costheta))=cottheta

Prove: (1+costheta-sin^2theta)/(sintheta(1+costheta))= cottheta

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tan theta))^(2)

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

Prove : (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

Prove: (1+tan^2theta)/(1+cot^2theta)=((1-tantheta)/(1-cottheta))^2=tan^2theta

If (1+tantheta)(1+tanphi)=2 , then theta + phi =

If t a n^2theta=2tan^2phi+1 , prove that cos2theta+sin^2phi=0.

Prove the following identity: (2sinthetacostheta-costheta)/(1-sintheta+sin^2theta-cos^2theta)=cottheta

Prove that: {1+cottheta-s e c(pi/2+theta)}{1+cottheta+s e c(pi/2+theta)}=2cottheta