Home
Class 12
MATHS
Given four points P1,P2,P3a n dP4 on the...

Given four points `P_1,P_2,P_3a n dP_4` on the coordinate plane with origin `O` which satisfy the condition `( vec (O P))_(n-1)+( vec(O P))_(n+1)=3/2 vec (O P)_(n)`. If P1 and P2 lie on the curve xy=1 , then prove that P3 does not lie on the curve

Text Solution

Verified by Experts

(i) Put n=2 in `vec(OP)_(n-1)+ vec(OP) _(n+1)= (3)/(2) vec(OP)_n`
`" "vec(OP)_3= (3)/(2) vec(OP)_2- vec(OP)_1" "`(i)
`" "vec(OP)_1= ahati+ (1)`
`{:(vec(OP)_1= ahati+ (1)/(a) hatj),(vec(OP)_2= bhati+ (1)/(b)hatj):}}ab ne 0`
`therefore " "vec(OP)_3 = (3)/(2) (bhati+ (1)/(b) hatj)- (ahati+ (1)/(a) hatj)`
`" "= ((3b)/(2)-a) hati+ ((3)/(2b) - (1)/(a) )hatj`
If `P_3` lies on xy=1, we have
`" "((3b)/(2)-a)((3)/(2b)- (1)/(a))= 1`
or `" "(3b-2a)(3a-2b) = 4ab`
or `" "9ab-6b^(2) - 6a^(2) + 4ab = 4ab`
or `" "2a^(2) - 3ab+ 2b^(2)=0`
which is not possible as Discriminant `lt 0 (a= 0 and b=0` not possible)
(ii) `vec(OP) = cos alpha hati+ sinbeta hatj`
`" "vec(OP)_2 = cos beta hati+ sinbetahatj`
`therefore " "vec(OP)_3= (3)/(2) (cosbeta hati+ sinbeta hatj) - (cosalpha hati+ sin alpha hatj)`
`" "= ((3)/(2) cos beta - cos alpha)hati + ((3)/(2) sin beta-sinalpha) hatj`
Since `P_3` lies on `x^(2) + y^(2)=1`, we have
`((3)/(2) cos beta - cosalpha)^(2) + ((3)/(2) sinbeta-sinalpha)^(2)=1`
or `" "(9)/(4) + 1-3(cosbeta cosalpha + sin beta sinalpha )=1`
or `" "(9)/(4) -3 cos (beta-alpha)=0 rArr cos (beta -alpha)=(3)/(4)" "` (ii)
Put n=3 in the given relation.
`vec(OP)_2 + vec(OP)_4 = (3)/(2) vec(OP)_3`
or `" " vec(OP)_4 = (3)/(2) vec(OP)_3-vec(OP)_2`
`" "=(3)/(2) ((3)/(2) vec(OP)_2-vec(OP)_1)-vec(OP)_2`
`" "=(5)/(4) vec(OP)_2- (3)/(2) vec(OP)_1`
`" "= (5)/(4) (cosbeta hati+sin betahatj) - (3)/(2) (cosalpha hati+ sin alpha hatj)`,
Which lies on `x^(2)+y^(2)=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|7 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

IF P_1, P_2, P_3, P_4 are points in a plane or space and O is the origin of vectors, show that P_4 coincides with Oiff( vec O P)_1+ vec P_1P_2+ vec P_2P_3+ vec P_3P_4= vec 0.

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

If P(n) is the statement n(n+1) is even, then what is P(3)?

If P_m stands for ^m P_m , then prove that: 1+1. P_1+2. P_2+3. P_3++ndotP_n=(n+1)!

The coordinates of the point P are (-3,\ 2) . Find the coordinates of the point Q which lies on the line joining P and origin such that O P=O Q .

If P(n) is the statement 2^ngeq3n , and if P(r) is true, prove that P(r+1) is true.

Let vec r_1, vec r_2, vec r_3, , vec r_n be the position vectors of points P_1,P_2, P_3 ,P_n relative to the origin Odot If the vector equation a_1 vec r_1+a_2 vec r_2++a_n vec r_n=0 hold, then a similar equation will also hold w.r.t. to any other origin provided a. a_1+a_2+dot+a_n=n b. a_1+a_2+dot+a_n=1 c. a_1+a_2+dot+a_n=0 d. a_1=a_2=a_3dot+a_n=0

If P(n) be the statement " 10n+3 is a prime number", then prove that P(1) and P(2) are true but P(3) is false.

If A( vec a),B( vec b)a n dC( vec c) are three non-collinear points and origin does not lie in the plane of the points A ,Ba n dC , then point P( vec p) in the plane of the A B C such that vector vec O P is _|_ to planeof A B C , show that vec O P=([ vec a vec b vec c]( vec axx vec b+ vec bxx vec c+ vec cxx vec a))/(4^2),w h e r e is the area of the A B Cdot

If vec P O+ vec O Q= vec Q O+ vec O R , show that the point, P ,Q ,R are collinear.