Home
Class 12
MATHS
Sow that x1 hat i+y1 hat j+z1 hat k ,x2 ...

Sow that `x_1 hat i+y_1 hat j+z_1 hat k ,x_2 hat i+y_2 hat j+z_2 hat k ,a n dx_3 hat i+y_3 hat j+z_3 hat k ,` are non-coplanar if `|x_1|>|y_1|+|z_1|,|y_2|>|x_2|+|z_2|a n d|z_3|>|x_3|+|y_3|` .

Text Solution

Verified by Experts

If the given vectors are coplanar, then
`" "|{:(x_1,,y_1,,z_1),(x_2,,y_2,,z_2), (x_3,,y_3,,z_3):}|=0`
or the set of equations
`" "x_1x+y_1y+ z_1z=0`,
and `x_2x+y_2y+z_2z=0`
`" "x_3x+y_3y +z_3z=0` has a non-trivial solution.
Let the given set has a non-trival solution x, y, z without the loss of generality, we can assume that `x ge y ge z`.
For the given equation `x_1x+ y_1y+ z_1z=0`, we have `x_1x= -y_1y- z_1z`. Therefore,
`" "|x_1x|= |y_1y+ z_1z|le |y_1y|+ |z_1z|`
`rArr " "|x_1x| le |y_1x|+ |z_1x|`
`rArr " "|x_1| le |y_1|+ |z_1|`,
which is a contraction to the given inequility, i.e.,
`" "|x_1| gt |y_1|+ |z_1|`,
Similarly, the other inequalities rule out the possibility of a non-trival solution.
Hence, the given equation has only a trival solution.
Hence, the given vectors are non-coplanar.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|7 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors veca= hat i-2 hat j+3 hat k , vecb=-2 hat i+3 hat j-4 hat ka n d vec c= hat i-3 hat j+5 hat k are coplanar.

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i- hat k) are collinear.

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

Prove that the following vectors are coplanar: hat i+ hat j+ hat k ,\ 2 hat i+3 hat j- hat k\ a n d- hat i-2 hat j+2 hat k

Find lambda so that the vectors vec a=2 hat i- hat j+ hat k ,\ vec b= hat i+2 hat j-3 hat k\ a n d\ vec c=3 hat i+lambda hat j+5 hat k are coplanar.

Find the values of x, y and z so that the vectors vec a=x hat i+2 hat j+z hat k and vec b=2 hat i+y hat j+ hat k are equal.

If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and vec c=z hat i+x hat j+y hat k , then vec axx( vec bxx vec c) is

Prove that the following vectors are non-coplanar: hat i+2 hat j+3 hat k ,2\ hat i+ hat j+3 hat k\ a n d\ hat i+ hat j+ hat k

Find the projection of the veca = 2 hat i+3 hat j+2 hat k on the vecb = hat i+2 hat j+ hat k .