Home
Class 12
MATHS
Consider the vectors hat i+cos(beta-alp...

Consider the vectors ` hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat k` and `cos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k `where `alpha,beta`, and `gamma` are different angles. If these vectors are coplanar, show that `a` is independent of `alpha,beta` and `gamma`

Text Solution

Verified by Experts

Since the vectors are coplanar, we have
`" "|{:(1,,cos(beta-alpha),,cos(gamma-alpha)),(cos(alpha-beta),,1,,cos(gamma-beta)),(cos(alpha-gamma),,cos(beta-gamma),,a):}|`
`" "|{:(cosalpha,,sinalpha,,0),(cosbeta,,sinbeta,,0),(cosgamma,,singamma,,a-1):}||{:(cosalpha,,sinalpha,,0),(cosbeta,, sinbeta,,0),(cosgamma,,singamma,,1):}|=0`
`rArr a=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|7 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

If alpha,beta,gamma are real numbers, then without expanding at any stage, show that |1cos(beta-alpha)"cos"(gamma-alpha)"cos"(alpha-beta)1"cos"(gamma-beta)"cos"(alpha-gamma)"cos"(beta-gamma)1|=0

If alpha +beta + gamma = 2theta then costheta+ cos(theta-alpha)+cos(theta-beta)+ cos(theta-gamma)

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

If alpha,beta "and" gamma are real number without expanding at any stage prove that |{:(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1):}| =0.

If alpha+beta+gamma=2 theta ,then cos theta + cos(theta - alpha) + cos(theta - beta) + cos(theta - gamma) =

If cos(alpha+beta)sin(gamma+delta)="cos"(alpha-beta)"sin"(gamma-delta) , prove that cotalphacotbetacotgamma=cotdelta

If alpha + beta + gamma = pi , show that : tan (beta+gamma-alpha) + tan (gamma+alpha-beta) + tan (alpha+beta-gamma) = tan (beta+gamma-alpha) tan (gamma+alpha-beta) tan (alpha+beta-gamma)