Home
Class 12
MATHS
In a quadrilateral P Q R S , vec P Q= ve...

In a quadrilateral `P Q R S , vec P Q= vec a , vec Q R = vec b , vec S P= vec a- vec b ,M` is the midpoint of ` vec Q Ra n dX` is a point on `S M` such that `S X=4/5S Mdot` Prove that `P ,Xa n dR` are collinear.

Text Solution

Verified by Experts

`vec(OM) = (vecb)/(2) rArr vec(PM) = veca + (vecb)/(2)`

`vec(SM) = vec(PM) -vec(PS) = 2veca-(1)/(2) vecb`
`vec(SX) = (4)/(5) vec(SM) = (8)/(5) veca - (2)/(5) vecb`
`vec(PX)= vec(PS) + vec(SX)`
`" "=-veca+vecb+ (8)/(5) veca- (2)/(5) vecb= (3)/(5) (veca+ vecb)`
Also `vec(PR) = vec(PQ) + vec(QR) = veca+ vecb= (5)/(3) vec(PX)`
Hence P, X and R are collinear.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|7 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If vec P O+ vec O Q= vec Q O+ vec O R , show that the point, P ,Q ,R are collinear.

Write vec P Q+ vec R P+ vec Q R in the simplified form.

If vec p is a unit vector and ( vec x-\ vec p).( vec x+\ vec p)=80 , then find | vec x|

A B C D is quadrilateral such that vec A B= vec b , vec A D= vec d , vec A C=m vec b+p vec ddot Show that he area of the quadrilateral A B C Di s1/2|m+p|| vec bxx vec d|dot

If P ,Q and R are three collinear points such that vec P Q= vec a and vec Q R = vec bdot Find the vector vec P R .

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

Let vec a= hat i+2 hat ja n d vec b=2 hat i+ hat jdoti s |vec a|=| vec b|? Are the vectors vec a a n d vec b equal?

Statement 1: if three points P ,Qa n dR have position vectors vec a , vec b ,a n d vec c , respectively, and 2 vec a+3 vec b-5 vec c=0, then the points P ,Q ,a n dR must be collinear. Statement 2: If for three points A ,B ,a n dC , vec A B=lambda vec A C , then points A ,B ,a n dC must be collinear.

If |vec(P) + vec(Q)| = |vec(P) - vec(Q)| , find the angle between vec(P) and vec(Q) .

If the vectors 3 vec p + vec q ; 5 vec p - 3 vecq and 2 vec p + vec q ; 4 vec p - 2 vec q are pairs of mutually perpendicular then sin( vec p , vec q) is :