Home
Class 12
MATHS
Statement 1: In "Delta"A B C , vec A B+ ...

Statement 1: In `"Delta"A B C , vec A B+ vec A B+ vec C A=0` Statement 2: If ` vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b`

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to analyze both statements regarding vectors in a triangle. ### Step-by-Step Solution: **Step 1: Analyze Statement 1** In triangle \( ABC \), we are given the vector equation: \[ \vec{AB} + \vec{BC} + \vec{CA} = 0 \] This statement is based on the triangle law of vector addition. According to this law, if you take the vectors representing the sides of a triangle in order, their sum will equal zero because they form a closed loop. **Conclusion for Statement 1:** This statement is **true**. --- **Step 2: Analyze Statement 2** We are given: \[ \vec{OA} = \vec{a}, \quad \vec{OB} = \vec{b} \] We need to find \( \vec{AB} \). Using the vector subtraction formula: \[ \vec{AB} = \vec{OB} - \vec{OA} \] Substituting the values we have: \[ \vec{AB} = \vec{b} - \vec{a} \] However, the statement claims: \[ \vec{AB} = \vec{a} + \vec{b} \] This is incorrect, as we have derived that: \[ \vec{AB} = \vec{b} - \vec{a} \] **Conclusion for Statement 2:** This statement is **false**. --- ### Final Conclusion: - Statement 1 is true. - Statement 2 is false. Therefore, the answer is **C**. ---

To solve the question, we need to analyze both statements regarding vectors in a triangle. ### Step-by-Step Solution: **Step 1: Analyze Statement 1** In triangle \( ABC \), we are given the vector equation: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise INTEGER TYPE|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Statement 1: In DeltaA B C , vec (A B)+ vec (BC)+ vec (C A)=0 Statement 2: If vec (O A)= vec a , vec (O B)= vec b ,t h e n \ vec (A B)= vec a+ vec b

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a ,\ vec O B= vec b ,\ then what is vec O C ?

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

Given the following simultaneous equation for vectors vec xa n d vec y , vec x+ vec y= vec a , vec xxx vec y= vec b , vec xdot vec a=1,t h e n vec x= dot ( vec a+( vec axx vec b))/( vec a^2) (B) ( vec a+( vec axx vec b))/(| vec a|) (C) (( vec a+( vec axx vec b)))/( vec b^2) (D) none of these

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c , show that vec b= vec c+t vec a for some scalar tdot

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ vec C D=c Then\ vec A E= a. vec a+ vec b+ vec c b. 2 vec a+ vec b+ vec c c. vec b+ vec c d. vec a+2 vec b+2 vec c