Home
Class 12
MATHS
Statement 1 : veca = 3 veci + p vecj +3v...

Statement 1 : `veca = 3 veci + p vecj +3veck and vecb = 2veci + 3vecj + qveck` are parallel vectors if `p = 9//2 and q =2`.
Statement 2 : If `veca= a_1 veci + a_2 vecj + a_3 veck and vecb = b_1 veci + b_2 vecj + b_3veck` are parallel, then `(a_1)/(b_1) = (a_2)/(b_2)= (a_3)/(b_3) `.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
A

`(3)/(2) = (p)/(q) = (3)/(q) rArr p = (9)/(2) and q =2 `
Thus, both the statements are true and Statement 2 is the correct explanation for Statement 1.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise INTEGER TYPE|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Statement 1: vec a=3 vec i+p vec j+3 vec k and vec b=2 vec i+3 vec j+q vec k are parallel vectors if p=9//2a n dq=2. Statement 2: if vec a=a_1 vec i+a_2 vec j+a_3 vec ka n d vec b=b_1 vec i+b_2 vec j+b_3 vec k are parallel, then (a_1)/(b_1)=(a_2)/(b_2)=(a_3)/(b_3)dot Which of the following Statements is/are correct ?

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

If veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck , find the angle between veca and vecb .

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

If vecV=2veci+3vecj and vecY=veci-5vecj , the resultant vector of 2vecU+3vecV equals

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci +xvecj + (1+x -y)veck . Then veca, vecb and vecc are non-coplanar for

Assertion: veca=hati+phatj+2hatk and hatb=2hati+3hatj+qhatk are parallel vectors if p=3/2, q=4 , Reason: If veca=a_1hati+a_2hatj+a_3hatk and vecb=b_1hati+b_2hatj+b_3hatk are parallel then a_1/b_1=a_2/b_2=a_3/b_3 . (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Let vecA=3veci+4vecj . Write four vector vecB such that vecA !=vecB but A=B .

If a vector vecr of magnitude 3sqrt6 is directed along the bisector of the angle between the vectors veca =7veci-4vecj -4veck and vecb = -2veci- vecj+ 2veck , then vecr is equal to