Home
Class 12
MATHS
Let veca, vecb and vecc be unit vector s...

Let `veca, vecb and vecc` be unit vector such that `veca + vecb - vecc =0`. If the area of triangle formed by vectors `veca and vecb` is A, then what is the value of `4A^(2)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(4A^2\) given that \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors satisfying the equation \(\vec{a} + \vec{b} - \vec{c} = 0\) and \(A\) is the area of the triangle formed by vectors \(\vec{a}\) and \(\vec{b}\). ### Step-by-Step Solution: 1. **Rewrite the Equation**: From the equation \(\vec{a} + \vec{b} - \vec{c} = 0\), we can express \(\vec{c}\) as: \[ \vec{c} = \vec{a} + \vec{b} \] 2. **Use the Property of Unit Vectors**: Since \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors, we know: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad |\vec{c}| = 1 \] Therefore, we can write: \[ |\vec{c}|^2 = |\vec{a} + \vec{b}|^2 = 1 \] 3. **Expand the Magnitude Squared**: Using the property of dot products, we have: \[ |\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) = 1 \] Substituting the magnitudes: \[ 1 + 1 + 2(\vec{a} \cdot \vec{b}) = 1 \] Simplifying gives: \[ 2 + 2(\vec{a} \cdot \vec{b}) = 1 \] \[ 2(\vec{a} \cdot \vec{b}) = -1 \] \[ \vec{a} \cdot \vec{b} = -\frac{1}{2} \] 4. **Calculate the Area of the Triangle**: The area \(A\) of the triangle formed by vectors \(\vec{a}\) and \(\vec{b}\) is given by: \[ A = \frac{1}{2} |\vec{a} \times \vec{b}| \] The magnitude of the cross product can be expressed as: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Since \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\), we have: \[ |\vec{a} \times \vec{b}| = \sin \theta \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). We can find \(\sin \theta\) using the cosine we found earlier: \[ \cos \theta = -\frac{1}{2} \implies \theta = \frac{2\pi}{3} \text{ (or } 120^\circ\text{)} \] Thus: \[ \sin \theta = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Therefore, the area \(A\) becomes: \[ A = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \] 5. **Calculate \(4A^2\)**: Now we need to find \(4A^2\): \[ 4A^2 = 4\left(\frac{\sqrt{3}}{4}\right)^2 = 4 \cdot \frac{3}{16} = \frac{3}{4} \] ### Final Answer: \[ 4A^2 = \frac{3}{4} \]

To solve the problem, we need to find the value of \(4A^2\) given that \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors satisfying the equation \(\vec{a} + \vec{b} - \vec{c} = 0\) and \(A\) is the area of the triangle formed by vectors \(\vec{a}\) and \(\vec{b}\). ### Step-by-Step Solution: 1. **Rewrite the Equation**: From the equation \(\vec{a} + \vec{b} - \vec{c} = 0\), we can express \(\vec{c}\) as: \[ \vec{c} = \vec{a} + \vec{b} ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ARCHIVES SUBJECTIVE TYPE|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise FILL IN THE BLANKS|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0 . Which of the following is correct?

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|