Home
Class 12
MATHS
Find the least positive integral value o...

Find the least positive integral value of `x` for which the angle between vectors ` vec a=x hat i-3 hat j- hat k` and `vec b=2x hat i+x hat j- hat k` is acute.

Text Solution

Verified by Experts

The correct Answer is:
2

Let `veca = x hati - 3hatj -hatk and vecb = 2x hati+ xhatj -hatk` be the adjacent sides of the parallelogram.
Now angle between `veca and vecb` is acute, i.e.,
`" "|veca = vec b| gt |veca - vecb|`
`rArr |3xhati + (x-3)hatj- 2hatk|^(2) gt |-xhati -(x+3)hatj|^(2)`
or `" "9x^(2) + (x-3)^(2)+ 4 gt x^(2) + (x+3)^(2)`

or ` " " 8x^(2) - 12x +4 gt 0`
or `" " 2x^(2) - 3x + 1 gt 0`
or `" "(2x-1)(x-1) gt 0`
`rArr x lt 1//2 or x gt 1 `
Hence, the least positive integral value is 2.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ARCHIVES SUBJECTIVE TYPE|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise FILL IN THE BLANKS|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec a= hat i- hat j+ hat k\ a n d\ vec b= hat i+ hat j- hat kdot

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the value of x for which the angle between the vectors vec a=2x^2 hat i+4x hat j+ hat k\ a n d\ vec b=7 hat i-2 hat j+x hat k is obtuse.

find the cosine of the angle between the vectors vec a= 3 hat i +2 hat k and vec b = 2 hat i -2 hat j + 4 hat k

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Find the values of x, y and z so that the vectors vec a=x hat i+2 hat j+z hat k and vec b=2 hat i+y hat j+ hat k are equal.

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)