Home
Class 12
MATHS
If vectors veca =hati +2hatj -hatk, vecb...

If vectors `veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk` are coplanar, then find the value of `lamda`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \vec{a} = \hat{i} + 2\hat{j} - \hat{k} \), \( \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \), and \( \vec{c} = \lambda \hat{i} + \hat{j} + 2\hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must equal zero. This can be represented using a determinant. ### Step-by-Step Solution: 1. **Write the vectors in component form**: \[ \vec{a} = (1, 2, -1), \quad \vec{b} = (2, -1, 1), \quad \vec{c} = (\lambda, 1, 2) \] 2. **Set up the determinant**: The vectors are coplanar if the determinant of the matrix formed by these vectors is zero: \[ \begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ \lambda & 1 & 2 \end{vmatrix} = 0 \] 3. **Calculate the determinant**: Using the formula for the determinant of a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where: - \( a = 1, b = 2, c = -1 \) - \( d = 2, e = -1, f = 1 \) - \( g = \lambda, h = 1, i = 2 \) The determinant can be calculated as follows: \[ = 1((-1)(2) - (1)(1)) - 2((2)(2) - (1)(\lambda)) - 1((2)(1) - (-1)(\lambda)) \] \[ = 1(-2 - 1) - 2(4 - \lambda) - 1(2 + \lambda) \] \[ = 1(-3) - 2(4 - \lambda) - (2 + \lambda) \] \[ = -3 - (8 - 2\lambda) - (2 + \lambda) \] \[ = -3 - 8 + 2\lambda - 2 - \lambda \] \[ = -13 + \lambda \] 4. **Set the determinant equal to zero**: \[ -13 + \lambda = 0 \] 5. **Solve for \( \lambda \)**: \[ \lambda = 13 \] ### Final Answer: The value of \( \lambda \) is \( 13 \).

To determine the value of \( \lambda \) for which the vectors \( \vec{a} = \hat{i} + 2\hat{j} - \hat{k} \), \( \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \), and \( \vec{c} = \lambda \hat{i} + \hat{j} + 2\hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must equal zero. This can be represented using a determinant. ### Step-by-Step Solution: 1. **Write the vectors in component form**: \[ \vec{a} = (1, 2, -1), \quad \vec{b} = (2, -1, 1), \quad \vec{c} = (\lambda, 1, 2) \] ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ARCHIVES SUBJECTIVE TYPE|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise FILL IN THE BLANKS|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

The vectors are given below veca = hati + 2hatj +3hatk vecb = 2hati + 4hatj + 6hatk and vecc = 3hati + 6hatj + 9 hatk find the components of the vector veca + vecb -vecc

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to