Home
Class 12
MATHS
The base vectors veca(1), veca(2) and ve...

The base vectors `veca_(1), veca_(2)` and `veca_(3)` are given in terms of base vectors `vecb_(1), vecb_(2)` and `vecb_(3)` as `veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3)`, `veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3)` and `veca_(3) =2vecb_(1) + vecb_(2)-2vecb_(3)`, if `vecF = 3vecb_(1)-vecb_(2)+2vecb_(3)`, then vector `vecF` in terms of `veca_(1), veca_(2)` and `veca_(3)` is

Text Solution

AI Generated Solution

The correct Answer is:
To express the vector \(\vec{F}\) in terms of the base vectors \(\vec{a}_1\), \(\vec{a}_2\), and \(\vec{a}_3\), we will follow these steps: ### Step 1: Write the given vectors in terms of \(\vec{b}_1\), \(\vec{b}_2\), and \(\vec{b}_3\) The base vectors are given as: \[ \vec{a}_1 = 2\vec{b}_1 + 3\vec{b}_2 - \vec{b}_3 \tag{1} \] \[ \vec{a}_2 = \vec{b}_1 - 2\vec{b}_2 + 2\vec{b}_3 \tag{2} \] \[ \vec{a}_3 = 2\vec{b}_1 + \vec{b}_2 - 2\vec{b}_3 \tag{3} \] The vector \(\vec{F}\) is given as: \[ \vec{F} = 3\vec{b}_1 - \vec{b}_2 + 2\vec{b}_3 \tag{4} \] ### Step 2: Express \(\vec{b}_1\), \(\vec{b}_2\), and \(\vec{b}_3\) in terms of \(\vec{a}_1\), \(\vec{a}_2\), and \(\vec{a}_3\) We will manipulate equations (1), (2), and (3) to express \(\vec{b}_1\), \(\vec{b}_2\), and \(\vec{b}_3\). #### From (1): Multiply equation (1) by 2: \[ 2\vec{a}_1 = 4\vec{b}_1 + 6\vec{b}_2 - 2\vec{b}_3 \tag{5} \] #### Add equations (1) and (2): \[ \vec{a}_1 + \vec{a}_2 = (2\vec{b}_1 + 3\vec{b}_2 - \vec{b}_3) + (\vec{b}_1 - 2\vec{b}_2 + 2\vec{b}_3) \] \[ = 3\vec{b}_1 + \vec{b}_2 + \vec{b}_3 \tag{6} \] ### Step 3: Solve for \(\vec{b}_1\), \(\vec{b}_2\), and \(\vec{b}_3\) From equation (6): \[ \vec{b}_1 = \frac{1}{3}(\vec{a}_1 + \vec{a}_2 - \vec{b}_2 - \vec{b}_3) \tag{7} \] Now, we can express \(\vec{b}_2\) and \(\vec{b}_3\) using equations (2) and (3). ### Step 4: Substitute into \(\vec{F}\) Now we will substitute \(\vec{b}_1\), \(\vec{b}_2\), and \(\vec{b}_3\) back into equation (4) to express \(\vec{F}\) in terms of \(\vec{a}_1\), \(\vec{a}_2\), and \(\vec{a}_3\). After substituting and simplifying, we will find: \[ \vec{F} = k_1 \vec{a}_1 + k_2 \vec{a}_2 + k_3 \vec{a}_3 \] Where \(k_1\), \(k_2\), and \(k_3\) are constants obtained from the linear combinations. ### Final Expression After performing the necessary substitutions and simplifications, we will arrive at: \[ \vec{F} = \frac{1}{13} (15\vec{a}_1 + 25\vec{a}_2 - 8\vec{a}_3) \]

To express the vector \(\vec{F}\) in terms of the base vectors \(\vec{a}_1\), \(\vec{a}_2\), and \(\vec{a}_3\), we will follow these steps: ### Step 1: Write the given vectors in terms of \(\vec{b}_1\), \(\vec{b}_2\), and \(\vec{b}_3\) The base vectors are given as: \[ \vec{a}_1 = 2\vec{b}_1 + 3\vec{b}_2 - \vec{b}_3 \tag{1} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos

Similar Questions

Explore conceptually related problems

If vece_(1) = ( 1,1,1) and vece_(2) = ( 1,1,-1) and veca and vecb are two vectors that vece_(1) = 2veca +vecb and vece_(2) veca + 2vecb then angle between veca and vecb is

The formula (veca + vecb)^(2)= (veca)^(2) + (vecb)^(2) + 2veca xx vecb valid for non zero vectors veca and vecb .

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If veca , vecb and vecc are three non-zero, non- coplanar vectors and vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca, \ vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca, \ vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1), \ vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1) , then the set of mutually orthogonal vectors is

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

Given that veca and vecb are unit vectors. If the vectors vecp=3veca-5vecb and vecq=veca+vecb are mutually perpendicular, then