Home
Class 12
MATHS
Given three vectors veca, vecb and vecc ...

Given three vectors `veca, vecb` and `vecc` are non-zero and non-coplanar vectors. Then which of the following are coplanar.

A

`veca+vecb, vecb+vecc,vecc+veca`

B

`veca-vecb,vecb+vecc,vecc+veca`

C

`veca+vecb,vecb-vecc,vecc-veca`

D

`veca+vecb,vecb+vecc,vecc-veca`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which combinations of the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are coplanar, we will analyze the given options step by step. ### Step 1: Understanding Coplanarity Three vectors are coplanar if they lie in the same plane. This can be determined if one vector can be expressed as a linear combination of the others. ### Step 2: Analyze Each Option We will evaluate the combinations provided in the question. #### Option 1: \( \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} \) - We need to check if these vectors can be expressed in terms of each other. - There is no direct linear combination that can express one of these vectors in terms of the others. - Therefore, these vectors are **not coplanar**. #### Option 2: \( \vec{c} + \vec{a}, \vec{b} + \vec{c}, \vec{a} + \vec{b} \) - We can express \( \vec{c} + \vec{a} \) as \( (\vec{b} + \vec{c}) + (\vec{a} - \vec{b}) \). - This shows that \( \vec{c} + \vec{a} \) can be represented as a combination of the other two vectors. - Hence, these vectors are **coplanar**. #### Option 3: \( \vec{a} + \vec{b}, \vec{c} - \vec{a}, \vec{b} - \vec{c} \) - We can express \( \vec{a} + \vec{b} \) as \( (\vec{c} - \vec{a}) + (\vec{b} - \vec{c}) + \vec{c} \). - This shows that \( \vec{a} + \vec{b} \) can be represented as a combination of the other two vectors. - Hence, these vectors are **coplanar**. #### Option 4: \( \vec{c} - \vec{a}, \vec{b} + \vec{c}, \vec{a} + \vec{b} \) - We can express \( \vec{c} - \vec{a} \) as \( (\vec{b} + \vec{c}) - (\vec{a} + \vec{b}) + \vec{b} \). - This shows that \( \vec{c} - \vec{a} \) can be represented as a combination of the other two vectors. - Hence, these vectors are **coplanar**. ### Conclusion From our analysis, the coplanar combinations are: - Option 2: \( \vec{c} + \vec{a}, \vec{b} + \vec{c}, \vec{a} + \vec{b} \) - Option 3: \( \vec{a} + \vec{b}, \vec{c} - \vec{a}, \vec{b} - \vec{c} \) - Option 4: \( \vec{c} - \vec{a}, \vec{b} + \vec{c}, \vec{a} + \vec{b} \) ### Final Answer The coplanar vectors are from options 2, 3, and 4. ---

To determine which combinations of the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are coplanar, we will analyze the given options step by step. ### Step 1: Understanding Coplanarity Three vectors are coplanar if they lie in the same plane. This can be determined if one vector can be expressed as a linear combination of the others. ### Step 2: Analyze Each Option We will evaluate the combinations provided in the question. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-zero vectors, then which of the following statement(s) is/are true?

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vecc, -veca+3vecb-5vecc,-veca+2vecb-3vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 4veca+5vecb+vecc, -vecb-vecc, 5veca+9vecb+4vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 5veca+6vecb+7vecc,7veca-8vecb+9vecc, 3veca+20vecb+5vecc

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If non-zero vectors veca and vecb are equally inclined to coplanar vector vecc , then vecc can be

If veca,vecb,vecc are non coplanar vectors, check whether the following points are coplanar: 6veca+2vecb-vecc, 2veca+vecb+3vecc, -veca+2vecb-4vecc, -12veca-vecb-3vecc