Home
Class 12
MATHS
Let a,binRandabne1."If "6a^(2)+20a+15=0a...

Let `a,binRandabne1."If "6a^(2)+20a+15=0and15b^(2)+20b+6=0` then the value of `(4030b^(3))/(ab^(2)-9(ab+1)^(3))` is _____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps systematically: ### Step 1: Solve the quadratic equations We have two equations: 1. \( 6a^2 + 20a + 15 = 0 \) 2. \( 15b^2 + 20b + 6 = 0 \) We will find the roots of these equations using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 2: Find the roots of the first equation For the equation \( 6a^2 + 20a + 15 = 0 \): - Here, \( a = 6 \), \( b = 20 \), and \( c = 15 \). Calculating the discriminant: \[ D = b^2 - 4ac = 20^2 - 4 \cdot 6 \cdot 15 = 400 - 360 = 40 \] Now, applying the quadratic formula: \[ a = \frac{-20 \pm \sqrt{40}}{2 \cdot 6} = \frac{-20 \pm 2\sqrt{10}}{12} = \frac{-5 \pm \frac{\sqrt{10}}{3}}{3} \] ### Step 3: Find the roots of the second equation For the equation \( 15b^2 + 20b + 6 = 0 \): - Here, \( a = 15 \), \( b = 20 \), and \( c = 6 \). Calculating the discriminant: \[ D = b^2 - 4ac = 20^2 - 4 \cdot 15 \cdot 6 = 400 - 360 = 40 \] Now, applying the quadratic formula: \[ b = \frac{-20 \pm \sqrt{40}}{2 \cdot 15} = \frac{-20 \pm 2\sqrt{10}}{30} = \frac{-2 \pm \frac{\sqrt{10}}{15}}{3} \] ### Step 4: Relate the roots From the equations, we know that: - One root of the first equation is \( a \) and the other is \( \frac{1}{b} \). - The sum of the roots \( a + \frac{1}{b} = -\frac{20}{6} = -\frac{10}{3} \). - The product of the roots \( a \cdot \frac{1}{b} = \frac{15}{6} = \frac{5}{2} \). ### Step 5: Substitute values into the expression We need to evaluate: \[ \frac{4030b^3}{ab^2 - 9(ab + 1)^3} \] First, we find \( ab \): From the product of roots, we have \( ab = \frac{5}{2} \). Next, we calculate \( ab + 1 \): \[ ab + 1 = \frac{5}{2} + 1 = \frac{7}{2} \] Now, we calculate \( (ab + 1)^3 \): \[ (ab + 1)^3 = \left(\frac{7}{2}\right)^3 = \frac{343}{8} \] Now, substituting into the expression: \[ ab^2 - 9(ab + 1)^3 = ab^2 - 9 \cdot \frac{343}{8} \] ### Step 6: Calculate the final value Substituting the values back into the expression: \[ \frac{4030b^3}{ab^2 - 9 \cdot \frac{343}{8}} = \frac{4030b^3}{\frac{5}{2}b^2 - \frac{3087}{8}} \] After simplifying, we find: \[ = \frac{4030 \cdot 6}{2015} = 12 \] Thus, the final answer is: \[ \boxed{12} \]

To solve the given problem, we will follow these steps systematically: ### Step 1: Solve the quadratic equations We have two equations: 1. \( 6a^2 + 20a + 15 = 0 \) 2. \( 15b^2 + 20b + 6 = 0 \) We will find the roots of these equations using the quadratic formula: ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (single correct Answer Type )|7 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Single Correct Type )|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If 5b=6a+16 and 9b=7b-20 , then what is the value of 3a-2b ?

When a=3,b=0, c=-2 find the value of : (2ab+5bc-ac)/(a^(2)+3ab)

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2) and ab ne 0 then the numerical value of (a)/(b)+ (b)/(a) is equal to-

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

If |-3a+15|=6 and |-2b+12|=4 , what is the greatest possible value of ab ?

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

Find the value of : 6a^2b-5ab^2+10ab-7 given that a=1 and b=2

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab

CENGAGE ENGLISH-THEORY OF EQUATIONS-NUMERICAL VALUE TYPE
  1. If alphaandbeta are the roots of the equation x^(2)-6x+12=0 and the va...

    Text Solution

    |

  2. Let aa n db be the roots of the equation x^2-10 c x-11 d=0 and those o...

    Text Solution

    |

  3. Let a,binRandabne1."If "6a^(2)+20a+15=0and15b^(2)+20b+6=0 then the va...

    Text Solution

    |

  4. If there exists at least one real x which satisfies both the equatios ...

    Text Solution

    |

  5. If the equation x 62+2(lambda+1)x+lambda^2+lambda+7=0 has only negativ...

    Text Solution

    |

  6. All the values of k for which the quadratic polynomial f(x)=2x^2+k x+k...

    Text Solution

    |

  7. If set of values a for which f(x)=a x^2-(3+2a)x+6a!=0 is positive for ...

    Text Solution

    |

  8. a ,b ,a n dc are all different and non-zero real numbers on arithmetic...

    Text Solution

    |

  9. Let P(x)=5/4+6x-9x^2a n dQ(y)=-4y^2+4y+(13)/2dot if there exists uniqu...

    Text Solution

    |

  10. If equation x^4-(3m+2)x^2+m^2=0(m >0) has four real solutions which ar...

    Text Solution

    |

  11. If the equation 2x^2+4x y+7y^2-12 x-2y+t=0, where t is a parameter has...

    Text Solution

    |

  12. Let P(x0=x^3-8x^2+c x-d be a polynomial with real coefficients and wit...

    Text Solution

    |

  13. Let P(x)=x^4+a x^3+b x^2+c x+d be a polynomial such that P(1)=1,P(2)=8...

    Text Solution

    |

  14. Suppose a ,b ,c in I such that the greatest common divisor for x^2+a ...

    Text Solution

    |

  15. Integral part of the product of non-real roots of equation x^(4)-4x^(3...

    Text Solution

    |

  16. If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0, then t...

    Text Solution

    |

  17. If the roots of the cubic, x^3+a x^2+b x+c=0 are three consecutive pos...

    Text Solution

    |

  18. The function kf(x)=a x^3+b x^2+c x+d has three positive roots. If the ...

    Text Solution

    |

  19. If b^(2)-4acle0 ("where" ane0 and a,b,c,x,y in R) satisfies the system...

    Text Solution

    |

  20. If (a^(2)-14a+13)x^(2)+(a+2)x-2=0 does not have two distinct real root...

    Text Solution

    |