Home
Class 12
MATHS
Let alpha and beta be the roots of x^2-6...

Let `alpha` and `beta` be the roots of `x^2-6x-2=0` with `alpha>beta` if `a_n=alpha^n-beta^n` for ` n>=1` then the value of `(a_10 - 2a_8)/(2a_9)`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start by identifying the roots of the quadratic equation \( x^2 - 6x - 2 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -6, c = -2 \). Calculating the discriminant: \[ b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot (-2) = 36 + 8 = 44 \] Now substituting back into the quadratic formula: \[ x = \frac{6 \pm \sqrt{44}}{2} = \frac{6 \pm 2\sqrt{11}}{2} = 3 \pm \sqrt{11} \] Thus, the roots are: \[ \alpha = 3 + \sqrt{11}, \quad \beta = 3 - \sqrt{11} \] ### Step 2: Define \( a_n \) Given \( a_n = \alpha^n - \beta^n \). ### Step 3: Establish recurrence relation From the properties of the roots of the quadratic equation, we can derive a recurrence relation: \[ a_n = 6a_{n-1} + 2a_{n-2} \] for \( n \geq 3 \). ### Step 4: Calculate \( a_1 \) and \( a_2 \) Calculating \( a_1 \) and \( a_2 \): \[ a_1 = \alpha - \beta = (3 + \sqrt{11}) - (3 - \sqrt{11}) = 2\sqrt{11} \] \[ a_2 = \alpha^2 - \beta^2 = (\alpha - \beta)(\alpha + \beta) = 2\sqrt{11} \cdot 6 = 12\sqrt{11} \] ### Step 5: Calculate \( a_3 \) and \( a_4 \) using the recurrence relation Using the recurrence relation: \[ a_3 = 6a_2 + 2a_1 = 6(12\sqrt{11}) + 2(2\sqrt{11}) = 72\sqrt{11} + 4\sqrt{11} = 76\sqrt{11} \] \[ a_4 = 6a_3 + 2a_2 = 6(76\sqrt{11}) + 2(12\sqrt{11}) = 456\sqrt{11} + 24\sqrt{11} = 480\sqrt{11} \] ### Step 6: Continue calculating up to \( a_{10} \) Continuing this process: \[ a_5 = 6a_4 + 2a_3 = 6(480\sqrt{11}) + 2(76\sqrt{11}) = 2880\sqrt{11} + 152\sqrt{11} = 3032\sqrt{11} \] \[ a_6 = 6a_5 + 2a_4 = 6(3032\sqrt{11}) + 2(480\sqrt{11}) = 18192\sqrt{11} + 960\sqrt{11} = 19152\sqrt{11} \] \[ a_7 = 6a_6 + 2a_5 = 6(19152\sqrt{11}) + 2(3032\sqrt{11}) = 114912\sqrt{11} + 6064\sqrt{11} = 120976\sqrt{11} \] \[ a_8 = 6a_7 + 2a_6 = 6(120976\sqrt{11}) + 2(19152\sqrt{11}) = 725856\sqrt{11} + 38304\sqrt{11} = 764160\sqrt{11} \] \[ a_9 = 6a_8 + 2a_7 = 6(764160\sqrt{11}) + 2(120976\sqrt{11}) = 4584960\sqrt{11} + 241952\sqrt{11} = 4826912\sqrt{11} \] \[ a_{10} = 6a_9 + 2a_8 = 6(4826912\sqrt{11}) + 2(764160\sqrt{11}) = 28961472\sqrt{11} + 1528320\sqrt{11} = 30489792\sqrt{11} \] ### Step 7: Calculate the expression \( \frac{a_{10} - 2a_8}{2a_9} \) Now substituting the values: \[ \frac{a_{10} - 2a_8}{2a_9} = \frac{(30489792\sqrt{11} - 2 \cdot 764160\sqrt{11})}{2 \cdot 4826912\sqrt{11}} = \frac{(30489792 - 1528320)}{9653824} \] Calculating the numerator: \[ 30489792 - 1528320 = 28961472 \] Thus: \[ \frac{28961472}{9653824} = 3 \] ### Final Answer The value of \( \frac{a_{10} - 2a_8}{2a_9} \) is \( 3 \).

To solve the problem, we start by identifying the roots of the quadratic equation \( x^2 - 6x - 2 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -6, c = -2 \). ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Multiple Correct Answer Type )|1 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Multiple Correct Answer Type )|2 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (single correct Answer Type )|7 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots x^2-6x-2=0, with alpha > beta If a_n=alpha^n-beta^n for or n >= 1 then the value of (a_10-2a_8)/(2a_9) is (a) 1 (b) 2 (c) 3 (d) 4

Let alpha and beta be the roots of the equation x^2-6x-2=0 If a_n=alpha^n-beta^n for ngt=0 then find the value of (a_10-2a_8)/(2a_9)

Let alpha and beta are roots of x^(2) - 17x - 6 = 0 with alpha gt beta, if a_(n) = alpha^(n+2)+beta^(n+2) for n ge 5 then the value of (a_(10)-6a_(8)-a_(9))/(a_(9))

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha, beta are the rootsof 6x^(2)-4sqrt2 x-3=0 , then alpha^(2)beta+alpha beta^(2) is

If alpha and beta are the roots of the equation x^(2)-px +16=0 , such that alpha^(2)+beta^(2)=9 , then the value of p is

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))