Home
Class 12
MATHS
If (3pi)/2 < alpha < 2pi then the modulu...

If `(3pi)/2` < `alpha` < `2pi` then the modulus argument of `(1+cos 2alpha)+i sin2alpha`

Text Solution

Verified by Experts

`z = (1-cos2 alpha)+ i sin 2alpha`
`= 2sin^(2) alpha + i (2sin alpha cos alpha)`
`=2 sin alpha(sin alpha + i cos alpha)`
`=-2 sin alpha (-sin alpha - i cos alpha)`
`=-2 sin alpha (cos((3pi)/(2)-alpha)+ sin ((3pi)/(2)-alpha))`
Thus, `|z| = - s sin alpha`
Alos, `(3pi)/(2) - alpha in ((-pi)/(2),0)`
Therefore, z lies in the fourth quadrant.
`therefore arg(z) = (3pi)/(2) =- alpha`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. -(3pi)/2

If sinA=1/2,cosB=(12)/(13), w h e r e pi < A < (3pi)/2 and (3pi)/2 < B < 2pi , f i n d tan(A-B)

If cosA=-24/25 and cos B=3/5 where pi < A < (3pi)/2 and (3pi)/2 < B < 2pi then find sin(A+B)

If cosA=-24/25 and cos B=3/5 where pi < A < (3pi)/2 and (3pi)/2 < B < 2pi then find cos(A+B)

f(x)=(s i nx)/(sqrt(1+tan^2x))+(cos x)/(sqrt(1+cot^2x)) is constant in which of following interval a. \ (0,\ pi/2) b. (pi/2,\ pi) c. (pi,\ (3pi)/2) d. ((3pi)/2,2pi)

Find the number of solutions to log_(e) |sin x| = -x^(2) + 2x in [-(pi)/(2), (3pi)/(2)] .

Number of solutions (s) of in |sin x|=-x ^(2) if x in [-(pi)/(2), (3pi)/(2)] is/are:

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is