Home
Class 12
MATHS
Find the principal argument of the compl...

Find the principal argument of the complex number `sin(6pi)/5+i(1+cos(6pi)/5)dot`

Text Solution

Verified by Experts

`Z = sin.(6pi)/(5) + i(1 + cos .(6pi)/(5))`
`= 2 cos.(3pi)/(5)( sin .(3pi)/(5) +i cos.(3pi)/(5))`
`2 cos.(3pi)/(5)(cos((pi)/(2)-(3pi)/(5))+i sin ((pi)/(2)-(3pi)/(5))`
`=2 cos.(3pi)/(5)[cos((-pi)/(10)) + i sin ((-pi)/(10))]`
`=2 cos.(3pi)/(5)[-cos.(pi)/(10) + i sin.(pi)/(10)]`
`= - 2 cos .(3pi)/(5)[ cos(pi-(pi)/(10)) + i sin (pi-(pi)/(10))]`
`=- 2 cos.(3pi)/(5)[cos.(9pi)/(10 )+ i sin.(9pi)/(10)]`
` therefore" " arg(z) = (9pi)/(10), and |z| = - 2 cos .(3pi)/(5)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Find the modulus, argument, and the principal argument of the complex numbers. (i-1)/(i(1-cos((2pi)/5))+sin((2pi)/5)

Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos" (6pi)/(5))

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

Find the modulus and principal argument of the following complex number: 5/2(cos30^0 +isin30^0)

Find the modulus and principal argument of the following complex number: cos 70^0+i cos 20^0

The amplitude of sin (pi)/(5) +i(1-cos"" (pi)/(5)) is

Find the principal values of the following : (i) sin^(-1)(sin.(5pi)/(3)) (ii) cos^(-1)cos((4pi)/(3)) (iii) cos [(pi)/(3) + cos^(-1) (-(1)/(2))]

Find the modulus and argument of the following complex number and convert them in polar form: (i-1)/[cos(pi/3)+isin(pi/3)]

Find the principal value of each of the following: (i) cos^(-1)(sin((4pi)/3)) (ii) cos^(-1)(tan((3pi)/4))