Home
Class 12
MATHS
If z=r e^(itheta) , then prove that |e^(...

If `z=r e^(itheta)` , then prove that `|e^(i z)|=e^(-r s inthetadot)`

Text Solution

AI Generated Solution

To prove that \(|e^{iz}| = e^{-r \sin \theta}\) given that \(z = r e^{i\theta}\), we will follow these steps: ### Step 1: Substitute \(z\) in the expression Given \(z = r e^{i\theta}\), we can write: \[ e^{iz} = e^{i(r e^{i\theta})} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

If z=re^(itheta) then |e^(iz)| is equal to:

If z=(a+i b)^5+(b+i a)^5 , then prove that R e(z)=I m(z),w h e r ea ,b in Rdot

If z=4 + 3i , then verify that -|z| le R e (z) lt |z|

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

let z1, z2,z3 be vertices of triangle ABC in an anticlockwise order and angle ACB = theta then z_2-z_3 = (CB)/(CA)(z_1-z3) e^itheta . let p point on a circle with op diameter 2 points Q & R taken on a circle such that angle POQ & QOR= theta if O be origin and PQR are complex no. z1, z2, z3 respectively then z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

Find the real part of e^e^(itheta)

If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

If A+B+C=pi and e^(itheta)=costheta+isintheta and z=|[e^(2iA), e^(-iC), e^(-iB)] , [e^(-iC), e^(2iB), e^(-iA)], [e^(-iB), e^(-iA), e^(2iC)]| , then