Home
Class 12
MATHS
If z=(a+i b)^5+(b+i a)^5 , then prove th...

If `z=(a+i b)^5+(b+i a)^5` , then prove that `R e(z)=I m(z),w h e r ea ,b in Rdot`

Text Solution

AI Generated Solution

To prove that \( \text{Re}(z) = \text{Im}(z) \) for \( z = (a + ib)^5 + (b + ia)^5 \), we will follow these steps: ### Step 1: Expand \( z \) We start with the expression for \( z \): \[ z = (a + ib)^5 + (b + ia)^5 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.6|10 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z=(a+ib)^5+(b+ia)^5 then prove that Re(z)=Im(z), where a,b in R.

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r s inthetadot)

If z=4 + 3i , then verify that -|z| le R e (z) lt |z|

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

Prove that z=i^i ,w h e r ei=sqrt(-1) , is purely real.

Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

Using Lagranges mean value theorem, prove that (b-a)/b < log(b/a) < (b-a)/a ,w h e r e 0 < a < bdot