Home
Class 12
MATHS
(i) If |z(1) +z(2)| = |z(1)|+|z(2)|, the...

(i) If `|z_(1) +z_(2)| = |z_(1)|+|z_(2)|`, then prove that `arg(z_(1)) = arg(z_(2))`
(ii) If `|z_(1) -z_(2)| = |z_(1)| +|z_(2)|`,then prove that `arg(z_(1)) - arg(z_(2)) = pi`

Text Solution

Verified by Experts

(a) ` |z_1 - z _2 | = | z_1 |- |z_2 | `

` rArr AB = OA - OB ` as shown in figure
`rArr ` Point ` A(z_1 ) , O ( 0 ), B(z_2) ` are collinear
`rArr arg(z_1) = arg (z_2) = theta `
(b) ` |z_1 + z _ 2 | = |z_1| - |z_2|`
` rArr ` Points ` A(z_1), O(0), B(-z_2) ` are collinear as shown in figurr

` rArr ` Points ` A(z_1 ) , O(0) , C(z_2)` are collinear
If ` arg(z_1) = theta`, then ` arg(z_2) = theta - pi `
` rArr arg (z_1) - arg (z_2) = pi `
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If arg (z_(1)z_(2))=0 and |z_(1)|=|z_(2)|=1 , then

Prove that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)=2|z_(1)|^(2) + 2|z_(2)|^(2)

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

If z_(1), z_(2) in C (set of complex numbers), prove that |z_(1) + z_(2)| le |z_(1)| + |z_(2)|