Home
Class 12
MATHS
For any complex number z , find the mini...

For any complex number `z ,` find the minimum value of `|z|+|z-2i|dot`

Text Solution

Verified by Experts

The correct Answer is:
2

We have , for ` z in C `
` |2i| = |z + ( 2i - z )| `
` le |z| + |2i - z | `
` rArr 2 le |z| + |z - 2i | `
Thus, minimum value of ` |z| + |z - 2i |` is 2.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

For any complex number z , the minimum value of |z|+|z-1|

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

State true or false for the following. For any complex number z, the minimum value of |z| + |z-1| is 1 .

For any complex number z, maximum value of |z|-|z-1| is

For a complex number z the minimum value of |z|+|z-cos alpha-i sin alpha| (where i=sqrt-1 ) is:

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

Let z be a complex number. If the minimum value of |z|^2+|z-3|^2+|z-3i|^2 is lambda , then the value of 6lambda is (1) 23 (2) 42 (3) 72 (4) 84

Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

If i^(2)=-1 , then for a complex number Z the minimum value of |Z|+|Z-3|+|Z+i|+|Z-3-2i| occurs at