Home
Class 12
MATHS
If a ,b ,c are non zero complex numbers ...

If `a ,b ,c` are non zero complex numbers of equal modlus and satisfy `a z^2+b z+c=0,` hen prove that `(sqrt(5)-1)//2lt=|z|lt=(sqrt(5)+1)//2.`

Text Solution

Verified by Experts

`|a| = |b| = |c| = r `
Again ` az^(2) + bz = - c `
` rArr |c| = |-az^(2) - bz| le |a||z^(2)| + |b| |z| `
` rArr r le r |z|^(2) + r |z| `
` rArr |z|^(2) + |z| - 1 ge 0 `
` rArr |z| ge (sqrt5 - 1 )/( 2 ) " " (1)`
Also from ` a z ^(2) = - bz - c,`
`|z|^(2) - |z| - 1 le 0 `
` rArr 0 lt |z| le (sqrt5 + 1 )/(2) " " ` (2)
From (1) and (2) ,
` (sqrt5 - 1 )/(2) le |z| le (sqrt 5 + 1 )/( 2 )`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Find the non-zero complex number z satisfying z =i z^2dot

Let a ,b and c be any three nonzero complex number. If |z|=1 and' z ' satisfies the equation a z^2+b z+c=0, prove that a .bar a = c .bar c and |a||b|= sqrt(a c( bar b )^2)

Find the complex number z satisfying R e(z^2 =0),|z|=sqrt(3.)

Find the complex number z satisfying R e(z^2) =0,|z|=sqrt(3.)

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Statement-1 : IF |z+1/z| =a , where z is a complex number and a is a real number, the least and greatest values of |z| are (sqrt(a^(2)+4-a))/2 and (sqrt(a^(2)+ 4)+a)/2 and Statement -2 : For a equal ot zero the greatest and the least values of |z| are equal .

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1