Home
Class 12
MATHS
If |z|lt=4 , then find the maximum value...

If `|z|lt=4` , then find the maximum value of `|i z+3-4i|dot`

Text Solution

Verified by Experts

The correct Answer is:
9

`|iz + 3 - 4i| le |iz| + | 3 - 4i| `
` " " = |z| + 5 le 4 + 5 = 9`
Hence, `|z|_(max) = 9`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If |z+4| leq 3 then the maximum value of |z+1| is

If |z-1|+|z+3|le8, then the maximum, value of |z-4| is =

If z is any complex number such that |z+4|lt=3, then find the greatest value of |z+1|dot

If is any complex number such that |z+4|lt=3, then find the greatest value of |z+1|dot

If |z""+""4|lt=3 , then the maximum value of |z""+""1| is (1) 4 (B) 10 (3) 6 (4) 0

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

If |z +2 - i |=5 then the maximum value of |3z+9-7i| is K, then find k

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If |z_1-1|lt=,|z_2-2|lt=2,|z_(33)|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot