Home
Class 12
MATHS
If x+y+z=1a n dx ,y ,z are positive, the...

If `x+y+z=1a n dx ,y ,z` are positive, then show that `(x+1/x)^2+(y+1/y)^2+(z+1/z)^2>(100)/3`

Text Solution

Verified by Experts

A.M of 2nd power `gt` 2nd power of A.M
`implies ((x + (1)/(2))^(2) + (y + (1)/(y))^(2) + (z + (1)/(z))^(2))/(3)`
`gt [((x + (1)/(2)) + (y + (1)/(y)) + (z + (1)/(z)))/(3)]^(2)`
or `((x + (1)/(2))^(2) + (y + (1)/(y))^(2) + (z + (1)/(z))^(2))/(3)`
`gt (1)/(9) (x + y + z + (1)/(x) + (1)/(y) + (1)/(z))^(2)`
or `((x + (1)/(2))^(2) + (y + (1)/(y))^(2) + (z + (1)/(z))^(2))/(3) gt (1)/(9) (1 + (1)/(x) + (1)/(y) + (1)/(z))^(2)`
Again `(x^(-1) + y^(-1) + z^(-1))/(3) gt ((x + + z)/(3))^(-1)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 8|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.1|8 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 6|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x+y+z=xyz , prove by trignometry that: (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2)).(2y)/(1-y^(2)).(2z)/(1-z^(2))

If x, y, z are distinct positive numbers such that x+(1)/(y)=y+(1)/(z)=z+(1)/(x) , then the value of xyz is __________

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If z= x + yi and |2z + 1| = |z- 2i| , show that 3(x^(2) + y^(2)) + 4(x-y)=3

If x+y+z=x y z prove that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/(1-x^2)(2y)/(1-y^2)(2z)/(1-z^2)dot

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x ,y ,z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2