Home
Class 12
MATHS
If a1, a2,...... ,an >0, then prove tha...

If `a_1, a_2,...... ,a_n >0,` then prove that `(a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n`

Text Solution

Verified by Experts

Since `A.M gt G.M`., we have
`(1)/(n) ((a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_n-1)/(a_n)+(a_n)/(a_1))((a_1)/(a_2)(a_2)/(a_3)(a_3)/(a_4)....(a_(n-1)a_n)/(a_na_1))^(1//n)`
or `((a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....(a_(n-1))/(a_n)+(a_n)/(a_1)) gt n(1)^n`
or `((a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+....+(a_(n-1))/(a_n))gt n`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, ,a_n are in H.P., then (a_1)/(a_2+a_3++a_n),(a_2)/(a_1+a_3++a_n), ,(a_n)/(a_1+a_2++a_(n-1)) are in a. A.P b. G.P. c. H.P. d. none of these

If a_1, a_2, a_3, ,a_(2n+1) are in A.P., then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_(2n)-a_2)/(a_(2n)+a_2)++(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to a. (n(n+1))/2xx(a_2-a_1)/(a_(n+1)) b. (n(n+1))/2 c. (n+1)(a_2-a_1) d. none of these

If 0lta_1lta_2lt....lta_n , then prove that tan^(-1)((a_1x-y) /(x+a_1y))+tan^(-1)((a_2-a_1) /(1+a_2a_1))+tan^(-1)((a_3-a_2)/(1+a_3a_2))+.......+tan^(-1)((a_n-a_(n-1)) /(1+a_n a_(n-1)))+tan^(-1)(1/(a_n))=tan^(-1)(x/y)dot

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1,a_2,a_3….a_(2n+1) are in A.P then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to

If S=a_1+a_2+......+a_n,a_i in R^+ for i=1 to n, then prove that S/(S-a_1)+S/(S-a_2)+......+S/(S-a_n) ge n^2/(n-1), AA n ge 2

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h