Home
Class 12
MATHS
If n ge 1 is a positive integer, then pr...

If n `ge` 1 is a positive integer, then prove that `3^(n) ge 2^(n) + n . 6^((n - 1)/(2))`

Text Solution

Verified by Experts

We know that ,
`a^(n) - b^(n) = (a-b) (a^(n-1) + a^(n-2) b + a^(n-3) b^(2) + .. . + b^(n-1))`
`therefore 3^(n) - 2^(n) = 3^(n-1) + 3^(n-2) 2 + 3^(n-3) 2^(2) + … + 2^(n-1)`
Using `A.M. ge G.M` , we get
`(3^(n-1) + 3^(n-2) . 2 + … + 2^(n-1))/(n) ge [(3 * 3^(2) * ... * 3^(n-1)) (2* 2^(2) * ... * 2^(n-1))]^(1//n)`
`3^((n-1)/(2)) * 2((n-1)/(2)) = 6^((n-1)/(2))`
`implies 3^(n) ge 2^(n) + n* 6 ((n-1)/(2))`.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If n is a positive integer, prove that 3^(3n)-26n-1 is divisible by 676.

If n is a positive integer, then show tha 3^(2n+1)+2^(n+2) is divisible by 7 .

For any positive integer n , prove that n^3-n divisible by 6.

If n is a positive integer, prove that |I m(z^n)|lt=n|I m(z)||z|^(n-1.)

If n is a positive integer then 2^(4n) - 15n - 1 is divisible by

If 'n' is a positive integer then prove that the coefficient fo x^(m) in the expansion of (x^(2)+(1)/(x))^(2n) is :

If 'n' is a positive integer then prove that the coefficient fo x^(m) in the expansion of (x^(2)+(1)/(x))^(2n) is :

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :