Home
Class 12
MATHS
If x,y,z gt 0 and x + y + z = 1, the pr...

If x,y,z `gt` 0 and x + y + z = 1, the prove that
`(2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3`.

Text Solution

AI Generated Solution

To prove that \[ \frac{2x}{1 - x} + \frac{2y}{1 - y} + \frac{2z}{1 - z} \geq 3 \] given that \(x, y, z > 0\) and \(x + y + z = 1\), we can use the Arithmetic Mean-Harmonic Mean (AM-HM) inequality. ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

If x,y,x gt 0 and x+y+z=1 then (xyz)/((1-x) (1-y) (1-z)) is necessarily.

If x+y+z=xyz , prove by trignometry that: (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2)).(2y)/(1-y^(2)).(2z)/(1-z^(2))

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

If x+y+z=x y z prove that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/(1-x^2)(2y)/(1-y^2)(2z)/(1-z^2)dot

If x+y+z=xyz , prove that: a) (3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))= (3x-x^(3))/(1-3x^(2)).(3y-y^(3))/(1-3y^(2)).(3z-z^(3))/(1-3z^(2)) b) (x+y)/(1-xy) + (y+z)/(1-yz)+(z+x)/(1-zx)= (x+y)/(1-xy) .(y+z)/(1-yz).(z+x)/(1-zx)

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)