Home
Class 12
MATHS
If Cr=(n !)/([r !(n-r)]), the prove that...

If `C_r=(n !)/([r !(n-r)]),` the prove that `sqrt(C_1)+sqrt(C_2)++sqrt(C_n)

Text Solution

Verified by Experts

A.M. of `(1//2)th` powers `lt (1//2)th` power of A.M.
`therefore ((C_1)^((1)/(2))+(C_2)^((1)/(2))+...+(C_n)^((1)/(2)))/(n)lt ((C_1+C_2+....C_n)/(n))^(1//2)`
or ` (sqrt(C_1)+sqrt(C_2)+....+ sqrt(C_n))/(n) lt ((2^n-1)/(n))^(1//2)`
or ` sqrt(C_1)+sqrt(C_2)+....+sqrt(C_n)lt (n sqrt((2^n-1)))/(sqrt(n))`
Hence,
` sqrt(C_1)+sqrt(C_2)+....+sqrt(C_n) lt sqrt([n(2^n-1)])`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct answer type)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

With the notation C_r= ^nC_2 = (n!)/(r!(n-r)! ) when n is positive inteer let S_n=C_n-(2/3)C_(n-1)+(2/3)^2C_(n-2)+- ……..+ (-1)^n(2/3)^n.C_0

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

If n=12 m(m in N), prove that ^n C_0-(^n C_2)/((2+sqrt(3))^2)+(^n C_4)/((2+sqrt(3))^4)-(^n C_6)/((2+sqrt(3))^6)+= (-1)^m((2sqrt(2))/(1+sqrt(3)))^ndot

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If C_(r) stands for .^(n)C_(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)(sum)r.C_(r)^(2)=lamda for n ge 2 , then lamda is divisible by

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

If (1+x)^n=underset(r=0)overset(n)C_(r)x^r then prove that C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2

If n >2, then prove that C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot

If n is a positive integer, prove that underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5