Home
Class 12
MATHS
If a + b =1, a gt 0,b gt 0, prove that (...

If a + b =1, a `gt` 0,b `gt` 0, prove that `(a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)`

Text Solution

AI Generated Solution

To prove that \( (a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \geq \frac{25}{2} \) given that \( a + b = 1 \) and \( a > 0, b > 0 \), we can follow these steps: ### Step 1: Use the Cauchy-Schwarz Inequality We start by applying the Cauchy-Schwarz inequality which states that for any non-negative real numbers \( x_1, x_2, y_1, y_2 \): \[ (x_1^2 + x_2^2)(y_1^2 + y_2^2) \geq (x_1y_1 + x_2y_2)^2 \] Let \( x_1 = a + \frac{1}{a} \) and \( x_2 = b + \frac{1}{b} \). Then we can express our inequality as: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct answer type)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

If agt0, b gt0 than lim_(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

If a and b are two negative integers such that a lt b " then " (1)/(a) gt (1)/(b) .

If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. If abc=1 , then the minimum value of (1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b)) is

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(b^2-a^2)

If a lt 0 and b lt 0 , then (a +b)^(2) gt 0 .