Home
Class 12
MATHS
If a,b,c,d in R^(+)-{1}, then the minimu...

If `a,b,c,d in R^(+)-{1}`, then the minimum value of `log_(d) a+ log_(c)b+log _(a)c+log_(b)d` is

A

4

B

2

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( \log_d a + \log_c b + \log_a c + \log_b d \) for positive real numbers \( a, b, c, d \) not equal to 1, we can utilize the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ E = \log_d a + \log_c b + \log_a c + \log_b d \] 2. **Apply Change of Base Formula**: Using the change of base formula for logarithms, we can rewrite each term: \[ \log_d a = \frac{\log a}{\log d}, \quad \log_c b = \frac{\log b}{\log c}, \quad \log_a c = \frac{\log c}{\log a}, \quad \log_b d = \frac{\log d}{\log b} \] Therefore, the expression becomes: \[ E = \frac{\log a}{\log d} + \frac{\log b}{\log c} + \frac{\log c}{\log a} + \frac{\log d}{\log b} \] 3. **Use AM-GM Inequality**: By applying the AM-GM inequality, we have: \[ \frac{\log a}{\log d} + \frac{\log b}{\log c} + \frac{\log c}{\log a} + \frac{\log d}{\log b} \geq 4 \sqrt[4]{\frac{\log a}{\log d} \cdot \frac{\log b}{\log c} \cdot \frac{\log c}{\log a} \cdot \frac{\log d}{\log b}} \] 4. **Simplify the Geometric Mean**: Notice that the product inside the fourth root simplifies: \[ \frac{\log a}{\log d} \cdot \frac{\log b}{\log c} \cdot \frac{\log c}{\log a} \cdot \frac{\log d}{\log b} = 1 \] Thus, we have: \[ \sqrt[4]{1} = 1 \] 5. **Conclude the Inequality**: Therefore, we conclude: \[ E \geq 4 \cdot 1 = 4 \] 6. **Minimum Value**: The minimum value of \( E \) is \( 4 \). ### Final Answer: The minimum value of \( \log_d a + \log_c b + \log_a c + \log_b d \) is \( 4 \).

To find the minimum value of the expression \( \log_d a + \log_c b + \log_a c + \log_b d \) for positive real numbers \( a, b, c, d \) not equal to 1, we can utilize the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ E = \log_d a + \log_c b + \log_a c + \log_b d ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

If a > 1, b > 1, then the minimum value of log_b a + log_a b is

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

The value of (bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b) is

If a,b, and c are positive and 9a+3b+c=90 , then the maximum value of (log a+log b+log c) is (base of the logarithm is 10)________.

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different from unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different than unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

If (2)/(b)=(1)/(a)+(1)/(c) ,then the value of (log(a+c)+log(a-2b+c))/(log(a-c)) is

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is

CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -EXERCISES (Single Correct answer type)
  1. The minimum value of (x^(4)+y^(4)+z^(2))/(xyz) for positive real numbe...

    Text Solution

    |

  2. A rod of fixed length k slides along the coordinates axes, If it meets...

    Text Solution

    |

  3. The least value of 6tan^2varphi+54cot^2varphi+18 is 54 when A.M.geq GM...

    Text Solution

    |

  4. If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the mi...

    Text Solution

    |

  5. If y=3^(x-1)+3^(-x-1) , then the least value of y is 2 6 2//3 3//2

    Text Solution

    |

  6. Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers...

    Text Solution

    |

  7. If the product of n positive numbers is n^n , then their sum is a posi...

    Text Solution

    |

  8. The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is a. 3...

    Text Solution

    |

  9. If l ,m ,n are the three positive roots of the equation x^3-a x^2+b x-...

    Text Solution

    |

  10. If positive numbers a ,b ,c are in H.P., then equation x^2-k x+2b^(101...

    Text Solution

    |

  11. For x^2-(a+3)|x|-4=0 to have real solutions, the range of a is a)(-oo...

    Text Solution

    |

  12. If a ,b ,c are the sides of a triangle, then the minimum value of a/(b...

    Text Solution

    |

  13. If a,b,c,d in R^(+)-{1}, then the minimum value of log(d) a+ log(c)b+l...

    Text Solution

    |

  14. If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is alwa...

    Text Solution

    |

  15. If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always geq12 geq9 lt...

    Text Solution

    |

  16. If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c...

    Text Solution

    |

  17. If a ,b ,c ,d in R^+a n da ,b ,c are in H.P., then a+d > b+c a+b > c+...

    Text Solution

    |

  18. If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a...

    Text Solution

    |

  19. f(x)=((x-2)(x-1))/(x-3), forall xgt3. The minimum value of f(x) is equ...

    Text Solution

    |

  20. If a >0, then least value of (a^3+a^2+a+1)^2 is (a)64 a^2 (b)16 a^4 ...

    Text Solution

    |