Home
Class 12
MATHS
f(x)=((x-2)(x-1))/(x-3), forall xgt3. Th...

`f(x)=((x-2)(x-1))/(x-3), forall xgt3`. The minimum value of `f(x)` is equal to

A

`3+2sqrt(2)`

B

`3+2sqrt(3)`

C

`3sqrt(2)+2`

D

`3sqrt(2)-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = \frac{(x-2)(x-1)}{(x-3)} \) for \( x > 3 \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \frac{(x-2)(x-1)}{(x-3)} \] For \( x > 3 \), we can make a substitution to simplify our calculations. Let: \[ t = x - 3 \quad \text{(which implies } x = t + 3 \text{)} \] Thus, we can rewrite \( f(x) \) in terms of \( t \): \[ f(t) = \frac{((t + 3) - 2)((t + 3) - 1)}{(t + 3) - 3} = \frac{(t + 1)(t + 2)}{t} \] ### Step 2: Simplify the function Now, simplifying \( f(t) \): \[ f(t) = \frac{(t + 1)(t + 2)}{t} = \frac{t^2 + 3t + 2}{t} = t + 3 + \frac{2}{t} \] So, we have: \[ f(t) = t + 3 + \frac{2}{t} \] for \( t > 0 \) (since \( x > 3 \) implies \( t > 0 \)). ### Step 3: Find the minimum value To find the minimum value of \( f(t) \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. We can apply AM-GM to the terms \( t \) and \( \frac{2}{t} \): \[ \frac{t + \frac{2}{t}}{2} \geq \sqrt{t \cdot \frac{2}{t}} = \sqrt{2} \] This implies: \[ t + \frac{2}{t} \geq 2\sqrt{2} \] Adding 3 to both sides gives: \[ f(t) = t + 3 + \frac{2}{t} \geq 2\sqrt{2} + 3 \] ### Step 4: Find when the minimum occurs The equality in AM-GM holds when: \[ t = \frac{2}{t} \implies t^2 = 2 \implies t = \sqrt{2} \] Thus, the minimum value occurs at \( t = \sqrt{2} \). ### Step 5: Calculate the minimum value Substituting \( t = \sqrt{2} \) back into \( f(t) \): \[ f(\sqrt{2}) = \sqrt{2} + 3 + \frac{2}{\sqrt{2}} = \sqrt{2} + 3 + \sqrt{2} = 2\sqrt{2} + 3 \] ### Conclusion Thus, the minimum value of \( f(x) \) for \( x > 3 \) is: \[ \boxed{3 + 2\sqrt{2}} \]

To find the minimum value of the function \( f(x) = \frac{(x-2)(x-1)}{(x-3)} \) for \( x > 3 \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \frac{(x-2)(x-1)}{(x-3)} \] For \( x > 3 \), we can make a substitution to simplify our calculations. Let: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

The minimum value of f(x)=|x-1|+|x-2|+|x-3| is equal to

Write the minimum value of f(x)=x+1/x ,\ \ x >0

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x)=|x+1|-1 , what is the minimum value of f(x) ?

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f(1) is

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of f(x) is 0 (b) -15 (c) 3-2pi none of these

Let F:R to R be such that F for all x in R (2^(1+x)+2^(1-x)), F(x) and (3^(x)+3^(-x)) are in A.P., then the minimum value of F(x) is:

Let f(x) = 4x^(2)-4ax+a^(2)-2a+2 and the golbal minimum value of f(x) for x in [0,2] is equal to 3 The number of values of a for which the global minimum value equal to 3 for x in [0,2] occurs at the endpoint of interval[0,2] is

CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -EXERCISES (Single Correct answer type)
  1. The minimum value of (x^(4)+y^(4)+z^(2))/(xyz) for positive real numbe...

    Text Solution

    |

  2. A rod of fixed length k slides along the coordinates axes, If it meets...

    Text Solution

    |

  3. The least value of 6tan^2varphi+54cot^2varphi+18 is 54 when A.M.geq GM...

    Text Solution

    |

  4. If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the mi...

    Text Solution

    |

  5. If y=3^(x-1)+3^(-x-1) , then the least value of y is 2 6 2//3 3//2

    Text Solution

    |

  6. Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers...

    Text Solution

    |

  7. If the product of n positive numbers is n^n , then their sum is a posi...

    Text Solution

    |

  8. The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is a. 3...

    Text Solution

    |

  9. If l ,m ,n are the three positive roots of the equation x^3-a x^2+b x-...

    Text Solution

    |

  10. If positive numbers a ,b ,c are in H.P., then equation x^2-k x+2b^(101...

    Text Solution

    |

  11. For x^2-(a+3)|x|-4=0 to have real solutions, the range of a is a)(-oo...

    Text Solution

    |

  12. If a ,b ,c are the sides of a triangle, then the minimum value of a/(b...

    Text Solution

    |

  13. If a,b,c,d in R^(+)-{1}, then the minimum value of log(d) a+ log(c)b+l...

    Text Solution

    |

  14. If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is alwa...

    Text Solution

    |

  15. If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always geq12 geq9 lt...

    Text Solution

    |

  16. If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c...

    Text Solution

    |

  17. If a ,b ,c ,d in R^+a n da ,b ,c are in H.P., then a+d > b+c a+b > c+...

    Text Solution

    |

  18. If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a...

    Text Solution

    |

  19. f(x)=((x-2)(x-1))/(x-3), forall xgt3. The minimum value of f(x) is equ...

    Text Solution

    |

  20. If a >0, then least value of (a^3+a^2+a+1)^2 is (a)64 a^2 (b)16 a^4 ...

    Text Solution

    |