Home
Class 12
MATHS
The solution of (d v)/(dt)+k/m v=-g is (...

The solution of `(d v)/(dt)+k/m v=-g` is (a) `( b ) (c) v=c (d) e^(( e ) (f) (g) k/( h )g( i ) (j) t (k))( l )-( m )(( n ) mg)/( o ) k (p) (q) (r)` (s) (b) `( t ) (u) v=c-( v )(( w ) mg)/( x ) k (y) (z) (aa) e^(( b b ) (cc) (dd) k/( e e ) m (ff) (gg) t (hh))( i i ) (jj)` (kk) (c) `( d ) (e) v (f) e^(( g ) (h) (i) k/( j ) m (k) (l) t (m))( n )=c-( o )(( p ) mg)/( q ) k (r) (s) (t)` (u) (d) `( v ) (w) v (x) e^(( y ) (z) (aa) k/( b b ) m (cc) (dd) t (ee))( f f )=c-( g g )(( h h ) mg)/( i i ) k (jj) (kk) (ll)` (mm)

A

`v=ce^(-k/mt)-(mg)/k`

B

`v=c-(mg)/ke^(-k/mt)`

C

`ve^(-k/mt)= c-(mg)/k`

D

`ve^(k/mt)=c-(mg)/k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dv}{dt} + \frac{k}{m}v = -g, \] we will follow these steps: ### Step 1: Rearranging the equation We can rearrange the equation to isolate the derivative on one side: \[ \frac{dv}{dt} = -\frac{k}{m}v - g. \] ### Step 2: Identifying the integrating factor This is a linear first-order differential equation. The integrating factor \( \mu(t) \) is given by: \[ \mu(t) = e^{\int \frac{k}{m} dt} = e^{\frac{k}{m}t}. \] ### Step 3: Multiplying through by the integrating factor We multiply the entire differential equation by the integrating factor: \[ e^{\frac{k}{m}t} \frac{dv}{dt} + e^{\frac{k}{m}t} \frac{k}{m} v = -g e^{\frac{k}{m}t}. \] ### Step 4: Recognizing the left-hand side as a derivative The left-hand side can be expressed as the derivative of a product: \[ \frac{d}{dt} \left( e^{\frac{k}{m}t} v \right) = -g e^{\frac{k}{m}t}. \] ### Step 5: Integrating both sides Now we integrate both sides with respect to \( t \): \[ \int \frac{d}{dt} \left( e^{\frac{k}{m}t} v \right) dt = \int -g e^{\frac{k}{m}t} dt. \] The left-hand side simplifies to: \[ e^{\frac{k}{m}t} v = -g \int e^{\frac{k}{m}t} dt. \] The integral on the right-hand side is: \[ -g \cdot \frac{m}{k} e^{\frac{k}{m}t} + C, \] where \( C \) is the constant of integration. ### Step 6: Solving for \( v \) Now we can express \( v \): \[ e^{\frac{k}{m}t} v = -\frac{mg}{k} e^{\frac{k}{m}t} + C. \] Dividing through by \( e^{\frac{k}{m}t} \): \[ v = -\frac{mg}{k} + Ce^{-\frac{k}{m}t}. \] ### Step 7: Final expression Thus, the general solution of the differential equation is: \[ v(t) = C e^{-\frac{k}{m}t} - \frac{mg}{k}. \]

To solve the differential equation \[ \frac{dv}{dt} + \frac{k}{m}v = -g, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|17 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension types|21 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.9|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Orthogonal trajectories of family of the curve x^(2/3)+y^2/3=a^((2/3)) , where a is any arbitrary constant, is (a) ( b ) (c) (d) x^(( e ) (f) (g)2/( h )3( i ) (j) (k))( l )-( m ) y^(( n ) (o) (p)2/( q )3( r ) (s) (t))( u )=c (v) (w) (b) ( x ) (y) (z) x^(( a a ) (bb) (cc)4/( d d )3( e e ) (ff) (gg))( h h )-( i i ) y^(( j j ) (kk) (ll)4/( m m )3( n n ) (oo) (pp))( q q )=c (rr) (ss) (c) ( d ) (e) (f) x^(( g ) (h) (i)4/( j )3( k ) (l) (m))( n )+( o ) y^(( p ) (q) (r)4/( s )3( t ) (u) (v))( w )=c (x) (y) (d) ( z ) (aa) (bb) x^(( c c ) (dd) (ee)1/( f f )3( g g ) (hh) (ii))( j j )-( k k ) y^(( l l ) (mm) (nn)1/( o o )3( p p ) (qq) (rr))( s s )=c (tt) (uu)

Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x-( g ) x^((( h )2( i ))( j ) (k))( l ) (m) (n) (b) ( o ) (p) y=c( q ) e^( r ) (s) (t) x^((( u )2( v ))( w )-x (x))( y ) (z) (aa) (c) ( d ) (e) y=c( f ) e^(( g ) x (h))( i ) (j) (k) (d) ( l ) (m) y=c (n) e^( o ) (p)-( q ) x^((( r )2( s ))( t ) (u))( v ) (w) (x)

The differential equation of all non-horizontal lines in a plane is (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q) (r) (s) (b) ( t ) (u) (v)(( w ) (x) d^(( y )2( z ))( a a ) x)/( b b )(( c c ) d (dd) y^(( e e )2( f f ))( g g ))( h h ) (ii)=0( j j ) (kk) (c) ( d ) (e) (f)(( g ) dy)/( h )(( i ) dx)( j ) (k)=0( l ) (m) (d) ( n ) (o) (p)(( q ) dx)/( r )(( s ) dy)( t ) (u)=0( v ) (w)

The differential equation of all parabolas whose axis are parallel to the y-axis is (a) ( b ) (c) (d)(( e ) (f) d^(( g )3( h ))( i ) y)/( j )(( k ) d (l) x^(( m )3( n ))( o ))( p ) (q)=0( r ) (s) (b) ( t ) (u) (v)(( w ) (x) d^(( y )2( z ))( a a ) x)/( b b )(( c c ) d (dd) y^(( e e )2( f f ))( g g ))( h h ) (ii)=C (jj) (kk) (c) ( d ) (e) (f)(( g ) (h) d^(( i )3( j ))( k ) y)/( l )(( m ) d (n) x^(( o )3( p ))( q ))( r ) (s)+( t )(( u ) (v) d^(( w )2( x ))( y ) x)/( z )(( a a ) d (bb) y^(( c c )2( d d ))( e e ))( f f ) (gg)=0( h h ) (ii) (d) ( j j ) (kk) (ll)(( m m ) (nn) d^(( o o )2( p p ))( q q ) y)/( r r )(( s s ) d (tt) x^(( u u )2( v v ))( w w ))( x x ) (yy)+2( z z )(( a a a ) dy)/( b b b )(( c c c ) dx)( d d d ) (eee)=C (fff) (ggg)

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x+1)),AAx >-1. If f(0)=5, then f(x) is (a) ( b ) (c)(( d ) (e) (f)(( g )3x+5)/( h )(( i ) x+1)( j ) (k) (l))( m ) e^( n ) (o) (p) x^((( q )2( r ))( s ) (t))( u ) (v) (w) (b) ( x ) (y)(( z ) (aa) (bb)(( c c )6x+5)/( d d )(( e e ) x+1)( f f ) (gg) (hh))( i i ) e^( j j ) (kk) (ll) x^((( m m )2( n n ))( o o ) (pp))( q q ) (rr) (ss) (c) ( d ) (e)(( f ) (g) (h)(( i )6x+5)/( j )(( k ) x+1)( l ) (m) (n))( o ) e^( p ) (q) (r) x^((( s )2( t ))( u ) (v))( w ) (x) (y) (d) ( z ) (aa)(( b b ) (cc) (dd)(( e e )5-6x)/( f f )(( g g ) x+1)( h h ) (ii) (jj))( k k ) e^( l l ) (mm) (nn) x^((( o o )2( p p ))( q q ) (rr))( s s ) (tt) (uu)

An angle is double of its supplement. The measure of the angle is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h )\ ( i ) (j) (b) ( k ) (l) (m) (n) 120^(( o )0( p ))( q ) (r) (s) (t) ( u ) (v) (w) (x) 40^(( y )0( z ))( a a ) (bb) (cc) (d) ( d d ) (ee) (ff) (gg) 80^(( h h )0( i i ))( j j ) (kk) (ll)

The solution of (x^2+x y)dy=(x^2+y^2)dx is (a) ( b ) (c)logx=log(( d ) (e) x-y (f))+( g ) y/( h ) x (i) (j)+c (k) (l) (m) ( n ) (o)logx=2log(( p ) (q) x-y (r))+( s ) y/( t ) x (u) (v)+c (w) (x) (y) ( z ) (aa)logx=log(( b b ) (cc) x-y (dd))+( e e ) x/( f f ) y (gg) (hh)+c (ii) (jj) (kk) None of these

The solution of the differential equation (dy)/(dx)=(3x^2y^4+2x y)/(x^2-2x^3y^3) is (a) ( b ) (c) (d)(( e ) (f) y^(( g )2( h ))( i ))/( j ) x (k) (l)-( m ) x^(( n )3( o ))( p ) (q) y^(( r )2( s ))( t )=c (u) (v) (w) ( x ) (y) (z)(( a a ) (bb) x^(( c c )2( d d ))( e e ))/( f f )(( g g ) (hh) y^(( i i )2( j j ))( k k ))( l l ) (mm)+( n n ) x^(( o o )3( p p ))( q q ) (rr) y^(( s s )3( t t ))( u u )=c (vv) (ww) (xx) ( y y ) (zz) (aaa)(( b b b ) (ccc) x^(( d d d )2( e e e ))( f f f ))/( g g g ) y (hhh) (iii)+( j j j ) x^(( k k k )3( l l l ))( m m m ) (nnn) y^(( o o o )2( p p p ))( q q q )=c (rrr) (sss) (d) ( t t t ) (uuu) (vvv)(( w w w ) (xxx) x^(( y y y )2( z z z ))( a a a a ))/( b b b b )(( c c c c )3y)( d d d d ) (eeee)-2( f f f f ) x^(( g g g g )3( h h h h ))( i i i i ) (jjjj) y^(( k k k k )2( l l l l ))( m m m m )=c (nnnn) (oooo)

The differential equation of the curve x/(c-1)+y/(c+1)=1 is (a) ( b ) (c)(( d ) (e) (f)(( g ) dy)/( h )(( i ) dx)( j ) (k)-1( l ))(( m ) (n) y+x (o)(( p ) dy)/( q )(( r ) dx)( s ) (t) (u))=2( v )(( w ) dy)/( x )(( y ) dx)( z ) (aa) (bb) (cc) (dd) ( e e ) (ff)(( g g ) (hh) (ii)(( j j ) dy)/( k k )(( l l ) dx)( m m ) (nn)+1( o o ))(( p p ) (qq) y-x (rr)(( s s ) dy)/( t t )(( u u ) dx)( v v ) (ww) (xx))=( y y )(( z z ) dy)/( a a a )(( b b b ) dx)( c c c ) (ddd) (eee) (fff) (ggg) ( h h h ) (iii)(( j j j ) (kkk) (lll)(( m m m ) dy)/( n n n )(( o o o ) dx)( p p p ) (qqq)+1( r r r ))(( s s s ) (ttt) y-x (uuu)(( v v v ) dy)/( w w w )(( x x x ) dx)( y y y ) (zzz) (aaaa))=2( b b b b )(( c c c c ) dy)/( d d d d )(( e e e e ) dx)( f f f f ) (gggg) (hhhh) (iiii)

Differential equation of the family of circles touching the line y=2 at (0,2) is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) (i)(( j ) (k) y-2( l ))^(( m )2( n ))( o )+( p )(( q ) dy)/( r )(( s ) dx)( t ) (u)(( v ) (w) y-2( x ))=0( y ) (z) (aa) ( b b ) (cc) (dd) x^(( e e )2( f f ))( g g )+(( h h ) (ii) y-2( j j ))(( k k ) (ll)2-2x (mm)(( n n ) dx)/( o o )(( p p ) dy)( q q ) (rr)-y (ss))=0( t t ) (uu) (vv) ( w w ) (xx) (yy) x^(( z z )2( a a a ))( b b b )+( c c c ) (ddd)(( e e e ) (fff) y-2( g g g ))^(( h h h )2( i i i ))( j j j )+(( k k k ) (lll) (mmm)(( n n n ) dx)/( o o o )(( p p p ) dy)( q q q ) (rrr)+y-2( s s s ))(( t t t ) (uuu) y-2( v v v ))=0( w w w ) (xxx) (yyy) None of these

CENGAGE ENGLISH-DIFFERENTIAL EQUATIONS-SINGLE CORRECT ANSWER TYPES
  1. The solution of the equation (x^2y+x^2)dx+y^2(x-1)dy=0 is given by (a)...

    Text Solution

    |

  2. Solve the following differential equations (dy)/(dx)=sinx*siny

    Text Solution

    |

  3. The solution of (d v)/(dt)+k/m v=-g is (a) ( b ) (c) v=c (d) e^(( e...

    Text Solution

    |

  4. The general solution of the differential equation (dy)/(dx)+sin(x+y)/2...

    Text Solution

    |

  5. if y+x(dy)/(dx)=x(phi(xy))/(phi'(xy)) then phi(xy) is equation to

    Text Solution

    |

  6. The solution of differential equation x^2=1 +(x/y)^(-1)(dy)/(dx)+((x...

    Text Solution

    |

  7. The solution of the differential equation (x+(x^3)/(3!)+(x^5)/(5!)+)/...

    Text Solution

    |

  8. The solution of the differential equation x=1+x y(dy)/(dx)+(x^2y^2)/(...

    Text Solution

    |

  9. A curve passing through (2,3) and satisfying the differential equat...

    Text Solution

    |

  10. The solution of the differential equation (d^2y)/(dx^2)=sin3x+e^x+x^2 ...

    Text Solution

    |

  11. The solution of the differential equation y^(')y^(''')=3(y^(''))^(2) i...

    Text Solution

    |

  12. The solution of the differential equation y^-8y^=0, where y(0)=1/8,y^(...

    Text Solution

    |

  13. The slope of the tangent at (x , y) to a curve passing through (1,p...

    Text Solution

    |

  14. x(dy)/(dx)=y(logy-logx+1)

    Text Solution

    |

  15. The solution of differential equation x y^(prime)=x((y^2)/(x^2)+(f((y^...

    Text Solution

    |

  16. The solution of (x^2+x y)dy=(x^2+y^2)dx is (a) ( b ) (c)logx=log(( d ...

    Text Solution

    |

  17. The solution of (y+x+5)dy=(y-x+1)dx is (a) ( b ) (c)log(( d ) (e) (f)...

    Text Solution

    |

  18. The slope of the tangent at (x , y) to a curve passing through a po...

    Text Solution

    |

  19. Solutionof the differential equation ydx-xdy+xsqrt(xy)dy=0 is

    Text Solution

    |

  20. The solution of x^(2)(dy)/(dx)-xy=1+cosy/x is

    Text Solution

    |