Home
Class 12
MATHS
A curve passing through (2,3) and sat...

A curve passing through `(2,3)` and satisfying the differential equation `int_0^x ty(t)dt=x^2y(x),(x >0)` is (a) `( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=13 (l)` (m) (b) `( n ) (o) (p) y^(( q )2( r ))( s )=( t )9/( u )2( v ) (w) x (x)` (y) (c) `( d ) (e) (f)(( g ) (h) x^(( i )2( j ))( k ))/( l )8( m ) (n)+( o )(( p ) (q) y^(( r )2( s ))( t ))/( u )(( v ) 18)( w ) (x)=1( y )` (z) (d) `( a a ) (bb) x y=6( c c )` (dd)

A

`x^(2)+y^(2)=13`

B

`y^(2)=9/2x`

C

`x^(2)/8+y^(2)/18=1`

D

`xy=6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the equation of a curve that passes through the point (2, 3) and satisfies the given differential equation. Let's break down the solution step by step. ### Step 1: Write down the given differential equation The differential equation is given as: \[ \int_0^x t y(t) \, dt = x^2 y(x) \quad (x > 0) \] ### Step 2: Differentiate both sides with respect to \( x \) Using the Leibniz rule for differentiation under the integral sign, we differentiate the left side: \[ \frac{d}{dx} \left( \int_0^x t y(t) \, dt \right) = x y(x) \] The right side differentiates to: \[ \frac{d}{dx} (x^2 y(x)) = 2x y(x) + x^2 \frac{dy}{dx} \] Setting both sides equal gives: \[ x y(x) = 2x y(x) + x^2 \frac{dy}{dx} \] ### Step 3: Rearranging the equation Rearranging the equation: \[ x y(x) - 2x y(x) = x^2 \frac{dy}{dx} \] This simplifies to: \[ -x y(x) = x^2 \frac{dy}{dx} \] Dividing both sides by \( x \) (assuming \( x > 0 \)): \[ -y(x) = x \frac{dy}{dx} \] ### Step 4: Separate variables Rearranging gives: \[ \frac{dy}{y} = -\frac{dx}{x} \] ### Step 5: Integrate both sides Integrating both sides: \[ \int \frac{dy}{y} = -\int \frac{dx}{x} \] This results in: \[ \ln |y| = -\ln |x| + C \] where \( C \) is the constant of integration. ### Step 6: Exponentiate to solve for \( y \) Exponentiating both sides gives: \[ |y| = e^{- \ln |x| + C} = \frac{e^C}{x} \] Let \( e^C = k \) (a positive constant), so: \[ y = \frac{k}{x} \] ### Step 7: Find the constant using the point (2, 3) We know the curve passes through the point (2, 3): \[ 3 = \frac{k}{2} \implies k = 6 \] ### Step 8: Write the final equation of the curve Substituting \( k \) back into the equation gives: \[ y = \frac{6}{x} \] or equivalently: \[ xy = 6 \] ### Conclusion The equation of the curve that passes through (2, 3) and satisfies the differential equation is: \[ xy = 6 \]

To solve the problem, we need to find the equation of a curve that passes through the point (2, 3) and satisfies the given differential equation. Let's break down the solution step by step. ### Step 1: Write down the given differential equation The differential equation is given as: \[ \int_0^x t y(t) \, dt = x^2 y(x) \quad (x > 0) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|17 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension types|21 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.9|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

The solution of the differential equation (x^2y^2-1)dy+2xy^3dx=0 is (a) ( b ) (c)1+( d ) x^(( e )2( f ))( g ) (h) y^(( i )2( j ))( k )=c x (l) (m) (b) ( n ) (o)1+( p ) x^(( q )2( r ))( s ) (t) y^(( u )2( v ))( w )=c y (x) (y) (c) ( d ) (e) y=0( f ) (g) (d) ( h ) (i) y=-( j )1/( k )(( l ) (m) x^(( n )2( o ))( p ))( q ) (r) (s) (t)

Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x-( g ) x^((( h )2( i ))( j ) (k))( l ) (m) (n) (b) ( o ) (p) y=c( q ) e^( r ) (s) (t) x^((( u )2( v ))( w )-x (x))( y ) (z) (aa) (c) ( d ) (e) y=c( f ) e^(( g ) x (h))( i ) (j) (k) (d) ( l ) (m) y=c (n) e^( o ) (p)-( q ) x^((( r )2( s ))( t ) (u))( v ) (w) (x)

The solution of the differential equation (dy)/(dx)=(3x^2y^4+2x y)/(x^2-2x^3y^3) is (a) ( b ) (c) (d)(( e ) (f) y^(( g )2( h ))( i ))/( j ) x (k) (l)-( m ) x^(( n )3( o ))( p ) (q) y^(( r )2( s ))( t )=c (u) (v) (w) ( x ) (y) (z)(( a a ) (bb) x^(( c c )2( d d ))( e e ))/( f f )(( g g ) (hh) y^(( i i )2( j j ))( k k ))( l l ) (mm)+( n n ) x^(( o o )3( p p ))( q q ) (rr) y^(( s s )3( t t ))( u u )=c (vv) (ww) (xx) ( y y ) (zz) (aaa)(( b b b ) (ccc) x^(( d d d )2( e e e ))( f f f ))/( g g g ) y (hhh) (iii)+( j j j ) x^(( k k k )3( l l l ))( m m m ) (nnn) y^(( o o o )2( p p p ))( q q q )=c (rrr) (sss) (d) ( t t t ) (uuu) (vvv)(( w w w ) (xxx) x^(( y y y )2( z z z ))( a a a a ))/( b b b b )(( c c c c )3y)( d d d d ) (eeee)-2( f f f f ) x^(( g g g g )3( h h h h ))( i i i i ) (jjjj) y^(( k k k k )2( l l l l ))( m m m m )=c (nnnn) (oooo)

The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (a) ( b ) (c) (d) x^(( e )2( f ))( g ) y+( h )(( i ) (j) x^(( k )3( l ))( m ) (n) y^(( o )3( p ))( q ))/( r )3( s ) (t)=c (u) (v) (b) ( w ) (x) x (y) y^(( z )2( a a ))( b b )+( c c )(( d d ) (ee) x^(( f f )3( g g ))( h h ) (ii) y^(( j j )3( k k ))( l l ))/( m m )3( n n ) (oo)=c (pp) (qq) (c) ( d ) (e) (f) x^(( g )2( h ))( i ) y+( j )(( k ) (l) x^(( m )4( n ))( o ) (p) y^(( q )4( r ))( s ))/( t )4( u ) (v)=c (w) (x) (d) None of these

In which of the following differential equation degree is not defined? (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)+3( r ) (s)(( t ) (u) (v)(( w ) dy)/( x )(( y ) dx)( z ) (aa) (bb))^(( c c )2( d d ))( e e )=xlog( f f )(( g g ) (hh) d^(( i i )2( j j ))( k k ) y)/( l l )(( m m ) d (nn) x^(( o o )2( p p ))( q q ))( r r ) (ss) (tt) (uu) (vv) ( w w ) (xx) (yy)(( z z ) (aaa) d^(( b b b )2( c c c ))( d d d ) y)/( e e e )(( f f f ) d (ggg) x^(( h h h )2( i i i ))( j j j ))( k k k ) (lll)+( m m m ) (nnn)(( o o o ) (ppp) (qqq)(( r r r ) dy)/( s s s )(( t t t ) dx)( u u u ) (vvv) (www))^(( x x x )2( y y y ))( z z z )=xsin( a a a a )(( b b b b ) (cccc) d^(( d d d d )2( e e e e ))( f f f f ) y)/( g g g g )(( h h h h ) d (iiii) x^(( j j j j )2( k k k k ))( l l l l ))( m m m m ) (nnnn) (oooo) (pppp) (qqqq) ( r r r r ) (ssss) x=sin(( t t t t ) (uuuu) (vvvv)(( w w w w ) dy)/( x x x x )(( y y y y ) dx)( z z z z ) (aaaaa)-2y (bbbbb)),|x|<1( c c c c c ) (ddddd) (eeeee) ( f f f f f ) (ggggg) x-2y=log(( h h h h h ) (iiiii) (jjjjj)(( k k k k k ) dy)/( l l l l l )(( m m m m m ) dx)( n n n n n ) (ooooo) (ppppp))( q q q q q ) (rrrrr)

Tangent to a curve intercepts the y-axis at a point Pdot A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is (a) ( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x ) (y) (b) ( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d ) (eee) (c) ( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l ) (m) (d) None of these

Tangent to a curve intercepts the y-axis at a point Pdot A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is (a) ( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x ) (y) (b) ( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d ) (eee) (c) ( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l ) (m) (d) None of these

The solution of the differential equation (d^2y)/(dx^2)=sin3x+e^x+x^2 when y_1(0)=1 and y(0) is (a) ( b ) (c) (d)(( e )-sin3x)/( f )9( g ) (h)+( i ) e^(( j ) x (k))( l )+( m )(( n ) (o) x^(( p )4( q ))( r ))/( s )(( t ) 12)( u ) (v)+( w )1/( x )3( y ) (z) x-1( a a ) (bb) (cc) ( d d ) (ee) (ff)(( g g )-sin3x)/( h h )9( i i ) (jj)+( k k ) e^(( l l ) x (mm))( n n )+( o o )(( p p ) (qq) x^(( r r )4( s s ))( t t ))/( u u )(( v v ) 12)( w w ) (xx)+( y y )1/( z z )3( a a a ) (bbb) x (ccc) (ddd) (eee) ( f f f ) (ggg) (hhh)(( i i i )-cos3x)/( j j j )3( k k k ) (lll)+( m m m ) e^(( n n n ) x (ooo))( p p p )+( q q q )(( r r r ) (sss) x^(( t t t )4( u u u ))( v v v ))/( w w w )(( x x x ) 12)( y y y ) (zzz)+( a a a a )1/( b b b b )3( c c c c ) (dddd) x+1( e e e e ) (ffff) (d) None of these

The solution of the equation (x^2y+x^2)dx+y^2(x-1)dy=0 is given by (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )+2(( l ) (m) x-y (n))+21n (o)(( p )(( q ) (r) x-1( s ))(( t ) (u) y+1( v )))/( w ) c (x) (y)=0( z ) (aa) (bb) ( c c ) (dd) (ee) x^(( f f )2( g g ))( h h )+( i i ) y^(( j j )2( k k ))( l l )+2(( m m ) (nn) x-y (oo))+1n (pp)(( q q )(( r r ) (ss) x-1( t t ))(( u u ) (vv) y+1( w w )))/( x x ) c (yy) (zz)=0( a a a ) (bbb) (ccc) ( d d d ) (eee) (fff) x^(( g g g )2( h h h ))( i i i )+( j j j ) y^(( k k k )2( l l l ))( m m m )+2(( n n n ) (ooo) x-y (ppp))-21n (qqq)(( r r r )(( s s s ) (ttt) x-1( u u u ))(( v v v ) (www) y+1( x x x )))/( y y y ) c (zzz) (aaaa)=0( b b b b ) (cccc) (dddd) None of these

In Fig.88 P R is a straight line and /_P Q S :/_S Q R=7: 5. The measure of /_S Q R is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) 62 (m) (n) (o)1/( p )2( q ) (r)^(( s )0( t ))( u ) (v) (w) (c) ( d ) (e) 67 (f) (g) (h)1/( i )2( j ) (k)^(( l )0( m ))( n ) (o) (p) (d) ( q ) (r) (s) (t) 75^(( u )0( v ))( w ) (x) (y)

CENGAGE ENGLISH-DIFFERENTIAL EQUATIONS-SINGLE CORRECT ANSWER TYPES
  1. The solution of the differential equation (x+(x^3)/(3!)+(x^5)/(5!)+)/...

    Text Solution

    |

  2. The solution of the differential equation x=1+x y(dy)/(dx)+(x^2y^2)/(...

    Text Solution

    |

  3. A curve passing through (2,3) and satisfying the differential equat...

    Text Solution

    |

  4. The solution of the differential equation (d^2y)/(dx^2)=sin3x+e^x+x^2 ...

    Text Solution

    |

  5. The solution of the differential equation y^(')y^(''')=3(y^(''))^(2) i...

    Text Solution

    |

  6. The solution of the differential equation y^-8y^=0, where y(0)=1/8,y^(...

    Text Solution

    |

  7. The slope of the tangent at (x , y) to a curve passing through (1,p...

    Text Solution

    |

  8. x(dy)/(dx)=y(logy-logx+1)

    Text Solution

    |

  9. The solution of differential equation x y^(prime)=x((y^2)/(x^2)+(f((y^...

    Text Solution

    |

  10. The solution of (x^2+x y)dy=(x^2+y^2)dx is (a) ( b ) (c)logx=log(( d ...

    Text Solution

    |

  11. The solution of (y+x+5)dy=(y-x+1)dx is (a) ( b ) (c)log(( d ) (e) (f)...

    Text Solution

    |

  12. The slope of the tangent at (x , y) to a curve passing through a po...

    Text Solution

    |

  13. Solutionof the differential equation ydx-xdy+xsqrt(xy)dy=0 is

    Text Solution

    |

  14. The solution of x^(2)(dy)/(dx)-xy=1+cosy/x is

    Text Solution

    |

  15. The solution of the differential equation 2x ^(2)y (dy)/(dx) = tan ( x...

    Text Solution

    |

  16. The solution of the differential equation {1/x-y^(2)/(x-y)^(2)}dx+{x^...

    Text Solution

    |

  17. The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (...

    Text Solution

    |

  18. The solution of y e^(-x/y)dx-(x e^((-x/y))+y^3)dy=0 is (a) ( b ) (c...

    Text Solution

    |

  19. The curve satisfying the equation (dy)/(dx)=(y(x+y^3))/(x(y^3-x)) and ...

    Text Solution

    |

  20. The solution of differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx)) ...

    Text Solution

    |