Home
Class 12
MATHS
The solution of (y+x+5)dy=(y-x+1)dx is (...

The solution of `(y+x+5)dy=(y-x+1)dx` is (a) `( b ) (c)log(( d ) (e) (f) (g)(( h ) (i) y+3( j ))^(( k )2( l ))( m )+( n ) (o)(( p ) (q) x+2( r ))^(( s )2( t ))( u ) (v))+( w ) (x)tan^(( y ) (z)-1( a a ))( b b ) (cc)(( d d ) y+3)/( e e )(( f f ) y+2)( g g ) (hh)+C (ii)` (jj) (kk) `( l l ) (mm)log(( n n ) (oo) (pp) (qq)(( r r ) (ss) y+3( t t ))^(( u u )2( v v ))( w w )+( x x ) (yy)(( z z ) (aaa) x-2( b b b ))^(( c c c )2( d d d ))( e e e ) (fff))+( g g g ) (hhh)tan^(( i i i ) (jjj)-1( k k k ))( l l l ) (mmm)(( n n n ) y-3)/( o o o )(( p p p ) y-2)( q q q ) (rrr)+C (sss)` (ttt) (uuu) `( v v v ) (www)log(( x x x ) (yyy) (zzz) (aaaa)(( b b b b ) (cccc) y+3( d d d d ))^(( e e e e )2( f f f f ))( g g g g )+( h h h h ) (iiii)(( j j j j ) (kkkk) x+2( l l l l ))^(( m m m m )2( n n n n ))( o o o o ) (pppp))+2( q q q q ) (rrrr)tan^(( s s s s ) (tttt)-1( u u u u ))( v v v v ) (wwww)(( x x x x ) y+3)/( y y y y )(( z z z z ) x+2)( a a a a a ) (bbbbb)+C (ccccc)` (ddddd) (eeeee) `( f f f f f ) (ggggg)log(( h h h h h ) (iiiii) (jjjjj) (kkkkk)(( l l l l l ) (mmmmm) y+3( n n n n n ))^(( o o o o o )2( p p p p p ))( q q q q q )+( r r r r r ) (sssss)(( t t t t t ) (uuuuu) x+2( v v v v v ))^(( w w w w w )2( x x x x x ))( y y y y y ) (zzzzz))-2( a a a a a a ) (bbbbbb)tan^(( c c c c c c ) (dddddd)-1( e e e e e e ))( f f f f f f ) (gggggg)(( h h h h h h ) y+3)/( i i i i i i )(( j j j j j j ) x+2)( k k k k k k ) (llllll)+C (mmmmmm)` (nnnnnn)

A

`log((y+3)^(2)+(x+2)^(2))+tan^(-1)(y+3)/(y+2)+C`

B

`log((y+3)^(2)+(x-2)^(2))+tan^(-1)(y-3)/(x-2)=C`

C

`log((y+3)^(2)+(x+2)^(2))+2tan^(-1)(y+3)/(x+2)=C`

D

`log((y+3)^(2)+(x+2)^(2))-2tan^(-1)(y+3)/(x+2)=C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((y + x + 5) dy = (y - x + 1) dx\), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the given equation: \[ (y + x + 5) dy - (y - x + 1) dx = 0 \] This can be rewritten as: \[ (y + x + 5) \frac{dy}{dx} = (y - x + 1) \] ### Step 2: Identifying Homogeneity Notice that the equation is homogeneous. We can express \(y\) in terms of \(x\) by substituting \(y = vx\), where \(v\) is a function of \(x\). Thus, we have: \[ dy = v dx + x \frac{dv}{dx} \] ### Step 3: Substituting into the Equation Substituting \(y = vx\) and \(dy\) into the equation gives: \[ (y + x + 5) \left(v dx + x \frac{dv}{dx}\right) = (vx - x + 1) dx \] Expanding and simplifying: \[ (vx + x + 5) \left(v dx + x \frac{dv}{dx}\right) = (vx - x + 1) dx \] ### Step 4: Simplifying the Equation We can simplify this equation. Dividing through by \(dx\) and rearranging leads to: \[ (v + 1 + \frac{5}{x}) \left(v + x \frac{dv}{dx}\right) = (v - 1 + \frac{1}{x}) \] ### Step 5: Separating Variables Rearranging gives us: \[ x \frac{dv}{dx} = \frac{(v - 1) - (v + 1 + \frac{5}{x})}{(v + 1 + \frac{5}{x})} \] This can be further simplified to separate variables. ### Step 6: Integrating Both Sides Integrating both sides will yield: \[ \int \frac{1}{v^2 + 1} dv = \int \frac{1}{x} dx \] The left-hand side integrates to \(\tan^{-1}(v)\) and the right-hand side integrates to \(\ln|x| + C\). ### Step 7: Back Substitution Substituting back \(v = \frac{y}{x}\), we get: \[ \tan^{-1}\left(\frac{y}{x}\right) = \ln|x| + C \] ### Step 8: Final Form Rearranging gives us: \[ y + 3 = k(x + 2) \] where \(k\) is a constant derived from the integration constant. ### Conclusion Thus, the solution to the differential equation is: \[ \log\left(\frac{(y + 3)^2 + (x + 2)^2}{(x + 2)^2}\right) + 2\tan^{-1}\left(\frac{y + 3}{x + 2}\right) = C \]

To solve the differential equation \((y + x + 5) dy = (y - x + 1) dx\), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the given equation: \[ (y + x + 5) dy - (y - x + 1) dx = 0 \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|17 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension types|21 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.9|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
CENGAGE ENGLISH-DIFFERENTIAL EQUATIONS-SINGLE CORRECT ANSWER TYPES
  1. The solution of differential equation x y^(prime)=x((y^2)/(x^2)+(f((y^...

    Text Solution

    |

  2. The solution of (x^2+x y)dy=(x^2+y^2)dx is (a) ( b ) (c)logx=log(( d ...

    Text Solution

    |

  3. The solution of (y+x+5)dy=(y-x+1)dx is (a) ( b ) (c)log(( d ) (e) (f)...

    Text Solution

    |

  4. The slope of the tangent at (x , y) to a curve passing through a po...

    Text Solution

    |

  5. Solutionof the differential equation ydx-xdy+xsqrt(xy)dy=0 is

    Text Solution

    |

  6. The solution of x^(2)(dy)/(dx)-xy=1+cosy/x is

    Text Solution

    |

  7. The solution of the differential equation 2x ^(2)y (dy)/(dx) = tan ( x...

    Text Solution

    |

  8. The solution of the differential equation {1/x-y^(2)/(x-y)^(2)}dx+{x^...

    Text Solution

    |

  9. The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (...

    Text Solution

    |

  10. The solution of y e^(-x/y)dx-(x e^((-x/y))+y^3)dy=0 is (a) ( b ) (c...

    Text Solution

    |

  11. The curve satisfying the equation (dy)/(dx)=(y(x+y^3))/(x(y^3-x)) and ...

    Text Solution

    |

  12. The solution of differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx)) ...

    Text Solution

    |

  13. The solution of the differential equation (dy)/(dx)=(3x^2y^4+2x y)/(x^...

    Text Solution

    |

  14. The solution of the differential equation {1+xsqrt((x^2+y^2))}dx+{sqrt...

    Text Solution

    |

  15. The solution of the differential equation y(2x^(4)+y)(dy)/(dx) = (1-...

    Text Solution

    |

  16. The solution of the differential equation (xcoty + log cosx)dy +(logsi...

    Text Solution

    |

  17. If dy/dx=(e^y-x)^(-1), where y(0)=0 , then y is expressed explicitly...

    Text Solution

    |

  18. The general solution of the differential equation, y^(prime)+yvarph...

    Text Solution

    |

  19. The integrating factor of the differential equation (dy)/(dx)(x(log)...

    Text Solution

    |

  20. The solution of the differential equation x(x^2+1)((dy)/(dx))=y(1-x^2)...

    Text Solution

    |