Home
Class 12
MATHS
The curve satisfying the equation (dy)/(...

The curve satisfying the equation `(dy)/(dx)=(y(x+y^3))/(x(y^3-x))` and passing through the point `(4,-2)` is (a) `( b ) (c) (d) y^(( e )2( f ))( g )=-2x (h)` (i) (b) `( j ) (k) y=-2x (l)` (m) (c) `( d ) (e) (f) y^(( g )3( h ))( i )=-2x (j)` (k) (d) None of these

A

`y^(2)=-2x`

B

`y=-2x`

C

`y^(3)=-2x`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`(xy^(3)-x^(2))dy-(xy+y^(4))dx=0`
or `y^(3)(xdy-ydx) -x(xdy+ydx)=0`
or `x^(2)y^(3)(xdy-ydx)/(x^(2))-x(xdy+ydx)=0`
or `x^(2)y^(3)d(y/x) -xd(xy)=0`
Dividing by `x^(3)y^(2)`, we get
`y/xd(y/x) -(d(xy))/(x^(2)y^(2))=0`
Now, integrating, we get `1/2(y/x)^(2)+1/(xy)=c`
It passes through the point `(4,-2)`. Thus,
`=1/8-1/8=c` or `c=0`
`therefore y^(3)=-2x`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|17 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension types|21 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.9|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

A curve is such that the mid-point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets the y-axis lies on the line y=xdot If the curve passes through (1,0), then the curve is (a) ( b ) (c)2y=( d ) x^(( e )2( f ))( g )-x (h) (i) (b) ( j ) (k) y=( l ) x^(( m )2( n ))( o )-x (p) (q) (c) ( d ) (e) y=x-( f ) x^(( g )2( h ))( i ) (j) (k) (d) ( l ) (m) y=2(( n ) (o) x-( p ) x^(( q )2( r ))( s ) (t))( u ) (v)

If x(t) is a solution of ((1+t)dy)/(dx)-t y=1 and y(0)=-1 then y(1) is (a) ( b ) (c)-( d )1/( e )2( f ) (g) (h) (i) (b) ( j ) (k) e+( l )1/( m )2( n ) (o) (p) (q) (c) ( d ) (e) e-( f )1/( g )2( h ) (i) (j) (k) (d) ( l ) (m) (n)1/( o )2( p ) (q) (r) (s)

A curve passing through (2,3) and satisfying the differential equation int_0^x ty(t)dt=x^2y(x),(x >0) is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=13 (l) (m) (b) ( n ) (o) (p) y^(( q )2( r ))( s )=( t )9/( u )2( v ) (w) x (x) (y) (c) ( d ) (e) (f)(( g ) (h) x^(( i )2( j ))( k ))/( l )8( m ) (n)+( o )(( p ) (q) y^(( r )2( s ))( t ))/( u )(( v ) 18)( w ) (x)=1( y ) (z) (d) ( a a ) (bb) x y=6( c c ) (dd)

The solution of the differential equation (dy)/(dx)=(3x^2y^4+2x y)/(x^2-2x^3y^3) is (a) ( b ) (c) (d)(( e ) (f) y^(( g )2( h ))( i ))/( j ) x (k) (l)-( m ) x^(( n )3( o ))( p ) (q) y^(( r )2( s ))( t )=c (u) (v) (w) ( x ) (y) (z)(( a a ) (bb) x^(( c c )2( d d ))( e e ))/( f f )(( g g ) (hh) y^(( i i )2( j j ))( k k ))( l l ) (mm)+( n n ) x^(( o o )3( p p ))( q q ) (rr) y^(( s s )3( t t ))( u u )=c (vv) (ww) (xx) ( y y ) (zz) (aaa)(( b b b ) (ccc) x^(( d d d )2( e e e ))( f f f ))/( g g g ) y (hhh) (iii)+( j j j ) x^(( k k k )3( l l l ))( m m m ) (nnn) y^(( o o o )2( p p p ))( q q q )=c (rrr) (sss) (d) ( t t t ) (uuu) (vvv)(( w w w ) (xxx) x^(( y y y )2( z z z ))( a a a a ))/( b b b b )(( c c c c )3y)( d d d d ) (eeee)-2( f f f f ) x^(( g g g g )3( h h h h ))( i i i i ) (jjjj) y^(( k k k k )2( l l l l ))( m m m m )=c (nnnn) (oooo)

If y(x) satisfies the differential equation (dy)/(dx)=(x^2-2y)/x where y(1)=-2 then y(x) will pass through the poing (A) (0,sqrt3) (B) (3,0) (C) (sqrt3,0) (D) (0,3)

The solution of the differential equation (x^2y^2-1)dy+2xy^3dx=0 is (a) ( b ) (c)1+( d ) x^(( e )2( f ))( g ) (h) y^(( i )2( j ))( k )=c x (l) (m) (b) ( n ) (o)1+( p ) x^(( q )2( r ))( s ) (t) y^(( u )2( v ))( w )=c y (x) (y) (c) ( d ) (e) y=0( f ) (g) (d) ( h ) (i) y=-( j )1/( k )(( l ) (m) x^(( n )2( o ))( p ))( q ) (r) (s) (t)

The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (a) ( b ) (c) (d) x^(( e )2( f ))( g ) y+( h )(( i ) (j) x^(( k )3( l ))( m ) (n) y^(( o )3( p ))( q ))/( r )3( s ) (t)=c (u) (v) (b) ( w ) (x) x (y) y^(( z )2( a a ))( b b )+( c c )(( d d ) (ee) x^(( f f )3( g g ))( h h ) (ii) y^(( j j )3( k k ))( l l ))/( m m )3( n n ) (oo)=c (pp) (qq) (c) ( d ) (e) (f) x^(( g )2( h ))( i ) y+( j )(( k ) (l) x^(( m )4( n ))( o ) (p) y^(( q )4( r ))( s ))/( t )4( u ) (v)=c (w) (x) (d) None of these

The solution of the equation (x^2y+x^2)dx+y^2(x-1)dy=0 is given by (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )+2(( l ) (m) x-y (n))+21n (o)(( p )(( q ) (r) x-1( s ))(( t ) (u) y+1( v )))/( w ) c (x) (y)=0( z ) (aa) (bb) ( c c ) (dd) (ee) x^(( f f )2( g g ))( h h )+( i i ) y^(( j j )2( k k ))( l l )+2(( m m ) (nn) x-y (oo))+1n (pp)(( q q )(( r r ) (ss) x-1( t t ))(( u u ) (vv) y+1( w w )))/( x x ) c (yy) (zz)=0( a a a ) (bbb) (ccc) ( d d d ) (eee) (fff) x^(( g g g )2( h h h ))( i i i )+( j j j ) y^(( k k k )2( l l l ))( m m m )+2(( n n n ) (ooo) x-y (ppp))-21n (qqq)(( r r r )(( s s s ) (ttt) x-1( u u u ))(( v v v ) (www) y+1( x x x )))/( y y y ) c (zzz) (aaaa)=0( b b b b ) (cccc) (dddd) None of these

The solution of the differential equation x=1+x y(dy)/(dx)+(x^2y^2)/(2!)((dy)/d)^2+(x^3y^3)/(3!)((dy)/(dx))^3+ i s (a) ( b ) (c) y=1n(( d ) x (e))+c (f) (g) (b) ( h ) (i) (j) y^(( k )2( l ))( m )=( n ) (o)(( p ) (q)1nx (r))^(( s )2( t ))( u )+c (v) (w) (c) ( d ) (e) y=logx+x y (f) (g) (d) ( h ) (i) x y=( j ) x^(( k ) y (l))( m )+c (n) (o)

The equation of a curve passing through (1,0) for which the product of the abscissa of a point P and the intercept made by a normal at P on the x-axis equal twice the square of the radius vector of the point P is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=( l ) x^(( m )4( n ))( o ) (p) (q) (b) ( r ) (s) (t) x^(( u )2( v ))( w )+( x ) y^(( y )2( z ))( a a )=2( b b ) x^(( c c )4( d d ))( e e ) (ff) (gg) (c) ( d ) (e) (f) x^(( g )2( h ))( i )+( j ) y^(( k )2( l ))( m )=4( n ) x^(( o )4( p ))( q ) (r) (s) (d) None of these

CENGAGE ENGLISH-DIFFERENTIAL EQUATIONS-SINGLE CORRECT ANSWER TYPES
  1. The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (...

    Text Solution

    |

  2. The solution of y e^(-x/y)dx-(x e^((-x/y))+y^3)dy=0 is (a) ( b ) (c...

    Text Solution

    |

  3. The curve satisfying the equation (dy)/(dx)=(y(x+y^3))/(x(y^3-x)) and ...

    Text Solution

    |

  4. The solution of differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx)) ...

    Text Solution

    |

  5. The solution of the differential equation (dy)/(dx)=(3x^2y^4+2x y)/(x^...

    Text Solution

    |

  6. The solution of the differential equation {1+xsqrt((x^2+y^2))}dx+{sqrt...

    Text Solution

    |

  7. The solution of the differential equation y(2x^(4)+y)(dy)/(dx) = (1-...

    Text Solution

    |

  8. The solution of the differential equation (xcoty + log cosx)dy +(logsi...

    Text Solution

    |

  9. If dy/dx=(e^y-x)^(-1), where y(0)=0 , then y is expressed explicitly...

    Text Solution

    |

  10. The general solution of the differential equation, y^(prime)+yvarph...

    Text Solution

    |

  11. The integrating factor of the differential equation (dy)/(dx)(x(log)...

    Text Solution

    |

  12. The solution of the differential equation x(x^2+1)((dy)/(dx))=y(1-x^2)...

    Text Solution

    |

  13. Integrating factor of differential equation cosx(dy)/(dx)+ysinx=1 is (...

    Text Solution

    |

  14. Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x, where |x|< ...

    Text Solution

    |

  15. If integrating factor of x(1-x^2)dy+(2x^2y-y-a x^3)dx=0 is e^(intp dx...

    Text Solution

    |

  16. A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x...

    Text Solution

    |

  17. The general solution of the equation (dy)/(dx)=1+x y is

    Text Solution

    |

  18. The solution of the differential equation ((x+2y^3)dy)/(dx)=y is

    Text Solution

    |

  19. The solution of the differential equation x^2(dy)/(dx)cos(1/x)-ysin(1/...

    Text Solution

    |

  20. The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is give...

    Text Solution

    |