Home
Class 12
MATHS
The curve with the property that the pro...

The curve with the property that the projection of the ordinate on the normal is constant and has a length equal to `a` is (a) `( b ) (c) a1n(( d ) (e)sqrt(( f ) (g) (h) y^(( i )2( j ))( k )-( l ) a^(( m )2( n ))( o ) (p))( q )+y (r))=x+c (s)` (t) (u) `( v ) (w) x+sqrt(( x ) (y) (z) a^(( a a )2( b b ))( c c )-( d d ) y^(( e e )2( f f ))( g g ) (hh))( i i )=c (jj)` (kk) (ll) `( m m ) (nn) (oo) (pp)(( q q ) (rr) y-a (ss))^(( t t )2( u u ))( v v )=c x (ww)` (xx) (yy) `( z z ) (aaa) a y=( b b b ) (ccc)tan^(( d d d ) (eee)-1( f f f ))( g g g )(( h h h ) (iii) x+c (jjj))( k k k )` (lll)

A

`a" ln "(sqrt(y^(2)-a^(2)))=x+c`

B

`x+sqrt(a^(2)-y^(2))=c`

C

`(y-a)^(2)=cx`

D

`ay=tan^(-1)(x+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the equation of the curve where the projection of the ordinate (y-coordinate) on the normal is constant and equal to a. Let's break down the solution step by step. ### Step 1: Understanding the Geometry Let \( P(x, y) \) be a point on the curve. The normal at this point makes an angle \( \theta \) with the x-axis. The projection of the ordinate \( y \) onto the normal is given to be constant and equal to \( a \). ### Step 2: Setting Up the Relationship From the geometry, we can express the projection of \( y \) onto the normal: \[ y \cos \theta = a \] This implies: \[ \cos \theta = \frac{a}{y} \] ### Step 3: Using the Slope of the Normal The slope of the normal line at point \( P \) is given by: \[ \text{slope of normal} = -\frac{dx}{dy} \] Thus, we have: \[ \theta = \pi - \frac{dy}{dx} \implies \frac{dy}{dx} = \pi - \theta \] ### Step 4: Finding \( \sin \theta \) Using the Pythagorean identity, we can find \( \sin \theta \): \[ \sin^2 \theta + \cos^2 \theta = 1 \implies \sin^2 \theta = 1 - \left(\frac{a}{y}\right)^2 \] Thus, \[ \sin \theta = \sqrt{1 - \frac{a^2}{y^2}} = \frac{\sqrt{y^2 - a^2}}{y} \] ### Step 5: Relating \( \tan \theta \) to \( \frac{dy}{dx} \) From the definition of tangent: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{y^2 - a^2}}{a} \] Since \( \tan \theta = \frac{dy}{dx} \), we have: \[ \frac{dy}{dx} = \frac{\sqrt{y^2 - a^2}}{a} \] ### Step 6: Separating Variables We can separate the variables: \[ a \, dy = \sqrt{y^2 - a^2} \, dx \] ### Step 7: Integrating Both Sides Integrate both sides: \[ \int \frac{a \, dy}{\sqrt{y^2 - a^2}} = \int dx \] The left side integrates to: \[ a \ln |y + \sqrt{y^2 - a^2}| + C_1 \] The right side integrates to: \[ x + C_2 \] ### Step 8: Combining Results Setting the constants equal, we can write: \[ x + C = a \ln |y + \sqrt{y^2 - a^2}| \] ### Final Equation Rearranging gives us the final form of the equation: \[ x + C = a \ln |y + \sqrt{y^2 - a^2}| \]

To solve the problem, we need to find the equation of the curve where the projection of the ordinate (y-coordinate) on the normal is constant and equal to a. Let's break down the solution step by step. ### Step 1: Understanding the Geometry Let \( P(x, y) \) be a point on the curve. The normal at this point makes an angle \( \theta \) with the x-axis. The projection of the ordinate \( y \) onto the normal is given to be constant and equal to \( a \). ### Step 2: Setting Up the Relationship From the geometry, we can express the projection of \( y \) onto the normal: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|17 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension types|21 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.9|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

The differential equation of the family of curves y=e^x(Acosx+Bsinx), where A and B are arbitrary constants is (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)-2( r )(( s ) dy)/( t )(( u ) dx)( v ) (w)+2y=0( x ) (y) (z) ( a a ) (bb) (cc)(( d d ) (ee) d^(( f f )2( g g ))( h h ) y)/( i i )(( j j ) d (kk) x^(( l l )2( m m ))( n n ))( o o ) (pp)+2( q q )(( r r ) dy)/( s s )(( t t ) dx)( u u ) (vv)+2y=0( w w ) (xx) (yy) ( z z ) (aaa) (bbb)(( c c c ) (ddd) d^(( e e e )2( f f f ))( g g g ) y)/( h h h )(( i i i ) d (jjj) x^(( k k k )2( l l l ))( m m m ))( n n n ) (ooo)+( p p p ) (qqq)(( r r r ) (sss) (ttt)(( u u u ) dy)/( v v v )(( w w w ) dx)( x x x ) (yyy) (zzz))^(( a a a a )2( b b b b ))( c c c c )+y=0( d d d d ) (eeee) (ffff) ( g g g g ) (hhhh) (iiii)(( j j j j ) (kkkk) d^(( l l l l )2( m m m m ))( n n n n ) y)/( o o o o )(( p p p p ) d (qqqq) x^(( r r r r )2( s s s s ))( t t t t ))( u u u u ) (vvvv)-7( w w w w )(( x x x x ) dy)/( y y y y )(( z z z z ) dx)( a a a a a ) (bbbbb)+2y=0( c c c c c ) (ddddd)

An angle is double of its supplement. The measure of the angle is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h )\ ( i ) (j) (b) ( k ) (l) (m) (n) 120^(( o )0( p ))( q ) (r) (s) (t) ( u ) (v) (w) (x) 40^(( y )0( z ))( a a ) (bb) (cc) (d) ( d d ) (ee) (ff) (gg) 80^(( h h )0( i i ))( j j ) (kk) (ll)

The differential equation whose general solution is given by y=(c_1cos(x+c_2)-(c_3e^((-x+c4))+(c_5sinx), where c_1,c_2,c_3,c_4,c_5 are arbitrary constants, is (a) ( b ) (c) (d)(( e ) (f) d^(( g )4( h ))( i ) y)/( j )(( k ) d (l) x^(( m )4( n ))( o ))( p ) (q)-( r )(( s ) (t) d^(( u )2( v ))( w ) y)/( x )(( y ) d (z) x^(( a a )2( b b ))( c c ))( d d ) (ee)+y=0( f f ) (gg) (hh) ( i i ) (jj) (kk)(( l l ) (mm) d^(( n n )3( o o ))( p p ) y)/( q q )(( r r ) d (ss) x^(( t t )3( u u ))( v v ))( w w ) (xx)+( y y )(( z z ) (aaa) d^(( b b b )2( c c c ))( d d d ) y)/( e e e )(( f f f ) d (ggg) x^(( h h h )2( i i i ))( j j j ))( k k k ) (lll)+( m m m )(( n n n ) dy)/( o o o )(( p p p ) dx)( q q q ) (rrr)+y=0( s s s ) (ttt) (uuu) ( v v v ) (www) (xxx)(( y y y ) (zzz) d^(( a a a a )5( b b b b ))( c c c c ))/( d d d d )(( e e e e ) d (ffff) x^(( g g g g )5( h h h h ))( i i i i ))( j j j j ) (kkkk)+y=0( l l l l ) (mmmm) (nnnn) ( o o o o ) (pppp) (qqqq)(( r r r r ) (ssss) d^(( t t t t )3( u u u u ))( v v v v ) y)/( w w w w )(( x x x x ) d (yyyy) x^(( z z z z )3( a a a a a ))( b b b b b ))( c c c c c ) (ddddd)-( e e e e e )(( f f f f f ) (ggggg) d^(( h h h h h )2( i i i i i ))( j j j j j ) y)/( k k k k k )(( l l l l l ) d (mmmmm) x^(( n n n n n )2( o o o o o ))( p p p p p ))( q q q q q ) (rrrrr)+( s s s s s )(( t t t t t ) dy)/( u u u u u )(( v v v v v ) dx)( w w w w w ) (xxxxx)-y=0( y y y y y ) (zzzzz)

The differential equation of all non-horizontal lines in a plane is (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q) (r) (s) (b) ( t ) (u) (v)(( w ) (x) d^(( y )2( z ))( a a ) x)/( b b )(( c c ) d (dd) y^(( e e )2( f f ))( g g ))( h h ) (ii)=0( j j ) (kk) (c) ( d ) (e) (f)(( g ) dy)/( h )(( i ) dx)( j ) (k)=0( l ) (m) (d) ( n ) (o) (p)(( q ) dx)/( r )(( s ) dy)( t ) (u)=0( v ) (w)

Differential equation of the family of circles touching the line y=2 at (0,2) is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) (i)(( j ) (k) y-2( l ))^(( m )2( n ))( o )+( p )(( q ) dy)/( r )(( s ) dx)( t ) (u)(( v ) (w) y-2( x ))=0( y ) (z) (aa) ( b b ) (cc) (dd) x^(( e e )2( f f ))( g g )+(( h h ) (ii) y-2( j j ))(( k k ) (ll)2-2x (mm)(( n n ) dx)/( o o )(( p p ) dy)( q q ) (rr)-y (ss))=0( t t ) (uu) (vv) ( w w ) (xx) (yy) x^(( z z )2( a a a ))( b b b )+( c c c ) (ddd)(( e e e ) (fff) y-2( g g g ))^(( h h h )2( i i i ))( j j j )+(( k k k ) (lll) (mmm)(( n n n ) dx)/( o o o )(( p p p ) dy)( q q q ) (rrr)+y-2( s s s ))(( t t t ) (uuu) y-2( v v v ))=0( w w w ) (xxx) (yyy) None of these

The slope of the tangent at (x , y) to a curve passing through (1,pi/4) is given by y/x-cos^2(y/x), then the equation of the curve is (a) ( b ) (c) y=( d ) (e)tan^(( f ) (g)-1( h ))( i )(( j ) (k)log(( l ) (m) (n) e/( o ) x (p) (q) (r))( s ))( t ) (u) (v) ( w ) (x) y=x (y) (z)tan^(( a a ) (bb)-1( c c ))( d d )(( e e ) (ff)log(( g g ) (hh) (ii) x/( j j ) e (kk) (ll) (mm))( n n ))( o o ) (pp) (qq) ( r r ) (ss) y=x (tt) (uu)tan^(( v v ) (ww)-1( x x ))( y y )(( z z ) (aaa)log(( b b b ) (ccc) (ddd) e/( e e e ) x (fff) (ggg) (hhh))( i i i ))( j j j ) (kkk) (d) none of these

Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x-( g ) x^((( h )2( i ))( j ) (k))( l ) (m) (n) (b) ( o ) (p) y=c( q ) e^( r ) (s) (t) x^((( u )2( v ))( w )-x (x))( y ) (z) (aa) (c) ( d ) (e) y=c( f ) e^(( g ) x (h))( i ) (j) (k) (d) ( l ) (m) y=c (n) e^( o ) (p)-( q ) x^((( r )2( s ))( t ) (u))( v ) (w) (x)

The solution of the differential equation (dy)/(dx)=(3x^2y^4+2x y)/(x^2-2x^3y^3) is (a) ( b ) (c) (d)(( e ) (f) y^(( g )2( h ))( i ))/( j ) x (k) (l)-( m ) x^(( n )3( o ))( p ) (q) y^(( r )2( s ))( t )=c (u) (v) (w) ( x ) (y) (z)(( a a ) (bb) x^(( c c )2( d d ))( e e ))/( f f )(( g g ) (hh) y^(( i i )2( j j ))( k k ))( l l ) (mm)+( n n ) x^(( o o )3( p p ))( q q ) (rr) y^(( s s )3( t t ))( u u )=c (vv) (ww) (xx) ( y y ) (zz) (aaa)(( b b b ) (ccc) x^(( d d d )2( e e e ))( f f f ))/( g g g ) y (hhh) (iii)+( j j j ) x^(( k k k )3( l l l ))( m m m ) (nnn) y^(( o o o )2( p p p ))( q q q )=c (rrr) (sss) (d) ( t t t ) (uuu) (vvv)(( w w w ) (xxx) x^(( y y y )2( z z z ))( a a a a ))/( b b b b )(( c c c c )3y)( d d d d ) (eeee)-2( f f f f ) x^(( g g g g )3( h h h h ))( i i i i ) (jjjj) y^(( k k k k )2( l l l l ))( m m m m )=c (nnnn) (oooo)

In which of the following differential equation degree is not defined? (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)+3( r ) (s)(( t ) (u) (v)(( w ) dy)/( x )(( y ) dx)( z ) (aa) (bb))^(( c c )2( d d ))( e e )=xlog( f f )(( g g ) (hh) d^(( i i )2( j j ))( k k ) y)/( l l )(( m m ) d (nn) x^(( o o )2( p p ))( q q ))( r r ) (ss) (tt) (uu) (vv) ( w w ) (xx) (yy)(( z z ) (aaa) d^(( b b b )2( c c c ))( d d d ) y)/( e e e )(( f f f ) d (ggg) x^(( h h h )2( i i i ))( j j j ))( k k k ) (lll)+( m m m ) (nnn)(( o o o ) (ppp) (qqq)(( r r r ) dy)/( s s s )(( t t t ) dx)( u u u ) (vvv) (www))^(( x x x )2( y y y ))( z z z )=xsin( a a a a )(( b b b b ) (cccc) d^(( d d d d )2( e e e e ))( f f f f ) y)/( g g g g )(( h h h h ) d (iiii) x^(( j j j j )2( k k k k ))( l l l l ))( m m m m ) (nnnn) (oooo) (pppp) (qqqq) ( r r r r ) (ssss) x=sin(( t t t t ) (uuuu) (vvvv)(( w w w w ) dy)/( x x x x )(( y y y y ) dx)( z z z z ) (aaaaa)-2y (bbbbb)),|x|<1( c c c c c ) (ddddd) (eeeee) ( f f f f f ) (ggggg) x-2y=log(( h h h h h ) (iiiii) (jjjjj)(( k k k k k ) dy)/( l l l l l )(( m m m m m ) dx)( n n n n n ) (ooooo) (ppppp))( q q q q q ) (rrrrr)

Tangent to a curve intercepts the y-axis at a point Pdot A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is (a) ( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x ) (y) (b) ( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d ) (eee) (c) ( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l ) (m) (d) None of these

CENGAGE ENGLISH-DIFFERENTIAL EQUATIONS-SINGLE CORRECT ANSWER TYPES
  1. The solution of the differential equation x^2(dy)/(dx)cos(1/x)-ysin(1/...

    Text Solution

    |

  2. The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is give...

    Text Solution

    |

  3. The solution of the differential equation (dy)/(dx)=1/(x y[x^2siny^2+1...

    Text Solution

    |

  4. The equation of a curve passing through (2,7/2) and having gradient...

    Text Solution

    |

  5. Which of the following is not the differential equation of family of c...

    Text Solution

    |

  6. Tangent to a curve intercepts the y-axis at a point Pdot A line ...

    Text Solution

    |

  7. Orthogonal trajectories of family of the curve x^(2/3)+y^2/3=a^((2/3))...

    Text Solution

    |

  8. The curve in the first quadrant for which the normal at any point (...

    Text Solution

    |

  9. The equation of the curve which is such that the portion of the axi...

    Text Solution

    |

  10. The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) ...

    Text Solution

    |

  11. A normal at P(x , y) on a curve meets the x-axis at Q and N is the f...

    Text Solution

    |

  12. A curve is such that the mid-point of the portion of the tangent in...

    Text Solution

    |

  13. The normal to a curve at P(x , y) meet the x-axis at Gdot If the ...

    Text Solution

    |

  14. The x-intercept of the tangent to a curve is equal to the ordinate of ...

    Text Solution

    |

  15. The equation of a curve passing through (1,0) for which the product...

    Text Solution

    |

  16. The curve with the property that the projection of the ordinate on ...

    Text Solution

    |

  17. Spherical rain drop evaporates at a rate proportional to its surfac...

    Text Solution

    |

  18. Water is drained from a vertical cylindrical tank by opening a value a...

    Text Solution

    |

  19. The population of a country increases at a rate proportional to the...

    Text Solution

    |

  20. An object falling from rest in air is subject not only to the gravit...

    Text Solution

    |