Home
Class 12
MATHS
Let y=f(x) satisfies the equation f(x) ...

Let `y=f(x)` satisfies the equation `f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt` y satisfies the differential equation

A

`(dy)/(dx)+y=e^(x)(cosx-sinx)-e^(-x)(cosx+sinx)`

B

`(dy)/(dx)-y=e^(x)(cosx-sinx)+e^(-x)(cosx+sinx)`

C

`(dy)/(dx)+y=e^(x)(cosx+sinx)-e^(-x)(cosx-sinx)`

D

`(dy)/(dx) -y=e^(x)(cosx-sinx)+e^(-x)(cosx-sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ f(x) = (e^{-x} + e^{x}) \cos x - 2x - \int_{0}^{x} (x - t) f'(t) dt \] ### Step 1: Rewrite the equation We can express the integral term in a more manageable form. The equation can be rewritten as: \[ f(x) = (e^{-x} + e^{x}) \cos x - 2x - \int_{0}^{x} (x f'(t) - t f'(t)) dt \] ### Step 2: Apply integration by parts We can apply integration by parts to the integral \(\int_{0}^{x} (x - t) f'(t) dt\). Let: - \(u = x - t\) (first function) - \(dv = f'(t) dt\) (second function) Then, we differentiate and integrate: - \(du = -dt\) - \(v = f(t)\) Now, applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ \int_{0}^{x} (x - t) f'(t) dt = (x-t)f(t) \bigg|_{0}^{x} - \int_{0}^{x} f(t) (-dt) \] ### Step 3: Evaluate the boundary terms Evaluating the boundary terms: \[ (x-x)f(x) - (x-0)f(0) = 0 - x f(0) = -x f(0) \] Thus, we have: \[ \int_{0}^{x} (x - t) f'(t) dt = -x f(0) + \int_{0}^{x} f(t) dt \] ### Step 4: Substitute back into the equation Substituting this back into our equation for \(f(x)\): \[ f(x) = (e^{-x} + e^{x}) \cos x - 2x + x f(0) - \int_{0}^{x} f(t) dt \] ### Step 5: Differentiate both sides Now, we differentiate both sides with respect to \(x\): \[ f'(x) = \frac{d}{dx}[(e^{-x} + e^{x}) \cos x] - 2 + f(0) + x f'(0) - f(x) \] Using the product rule on the right side: \[ f'(x) = \left( -e^{-x} \cos x + e^{x} \cos x - (e^{-x} + e^{x}) \sin x \right) - 2 + f(0) + x f'(0) - f(x) \] ### Step 6: Rearranging the equation Rearranging gives us a differential equation involving \(f(x)\) and \(f'(x)\): \[ f'(x) + f(x) = -\left( e^{-x} \cos x + e^{x} \cos x - (e^{-x} + e^{x}) \sin x - 2 + f(0) + x f'(0) \right) \] ### Step 7: Solve for \(f(0)\) To find \(f(0)\), we substitute \(x = 0\) in the original equation: \[ f(0) = (e^{0} + e^{0}) \cos(0) - 2(0) - 0 = 2 \] ### Conclusion The function \(f(x)\) satisfies the differential equation derived above. The final form of the differential equation is: \[ f'(x) + f(x) = -\left( e^{-x} \cos x + e^{x} \cos x - (e^{-x} + e^{x}) \sin x - 2 + 2 + 0 \right) \]

To solve the problem, we start with the equation given: \[ f(x) = (e^{-x} + e^{x}) \cos x - 2x - \int_{0}^{x} (x - t) f'(t) dt \] ### Step 1: Rewrite the equation We can express the integral term in a more manageable form. The equation can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Numerical value type|17 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Archives|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt The value of f(0)+f^(')(0) equal (a) -1 (b) 0 (c) 1 (d) none of these

Find f(x) if it satisfies the relation f(x) = e^(x) + int_(0)^(1) (x+ye^(x))f(y) dy .

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

A differentiable function y = g(x) satisfies int_0^x(x-t+1) g(t) dt=x^4+x^2 for all x>=0 then y=g(x) satisfies the differential equation

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

CENGAGE ENGLISH-DIFFERENTIAL EQUATIONS-Linked Comprehension types
  1. For certain curve y=f(x) satisfying (d^(2)y)/(dx^(2))=6x-4, f(x) has l...

    Text Solution

    |

  2. For certain curve y=f(x) satisfying (d^(2)y)/(dx^(2))=6x-4, f(x) has l...

    Text Solution

    |

  3. The differential equation y=px+f(p), …………..(i) where p=(dy)/(dx),is k...

    Text Solution

    |

  4. The differential equation y=px+f(p), …………..(i) where p=(dy)/(dx),is ...

    Text Solution

    |

  5. The differential equation y=px+f(p), …………..(i) where p=(dy)/(dx),is ...

    Text Solution

    |

  6. Let f(x) be a non-positive continuous function and F(x)=int(0)^(x)f(t)...

    Text Solution

    |

  7. Let f(x) be a non-positive continuous function and F(x)=int(0)^(x)f(t)...

    Text Solution

    |

  8. Let f(x) be a non-positive continuous function and F(x)=int(0)^(x)f(t)...

    Text Solution

    |

  9. A curve C with negative slope through the point (0, 1) lies in the fir...

    Text Solution

    |

  10. A curve 'C' with negative slope through the point(0,1) lies in the I Q...

    Text Solution

    |

  11. A curve C with negative slope through the point (0, 1) lies in the fir...

    Text Solution

    |

  12. Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int(0)...

    Text Solution

    |

  13. Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int(0...

    Text Solution

    |

  14. Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int(0...

    Text Solution

    |

  15. A certain radioactive material is known to decay at a rate proportiona...

    Text Solution

    |

  16. A certain radioactive material is known to decay at a rate proportiona...

    Text Solution

    |

  17. A certain radioactive material is known to decay at a rate proportiona...

    Text Solution

    |

  18. Consider a tank which initially holds V(0) liter of brine that contain...

    Text Solution

    |

  19. A 50 L tank initailly contains 10 L of fresh water, At t=0, a brine so...

    Text Solution

    |

  20. In the above question, the amount of salt in the tank at the moment of...

    Text Solution

    |